![SPSS进阶分析与实务](https://wfqqreader-1252317822.image.myqcloud.com/cover/546/47379546/b_47379546.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.2.5 输出结果
描述统计表如图 1-2-7 所示,从中可知两个因变量“感情表现得分”和“动作标准得分”中各个小组的平均值、标准偏差和个案数。如第 1 组的“感情表现得分”平均值为70.9990,“动作标准得分”平均值为49.0090。
图 1-2-8 所示为协方差矩阵的博克斯等同性检验的结果,本案例中的显著性(P 值)大于0.05,表示总体协方差矩阵相等。
![](https://epubservercos.yuewen.com/A510EC/26764229109737206/epubprivate/OEBPS/Images/43604_20_2.jpg?sign=1738868910-0M0DreBNDVQyx0kEuat1ARXWQS0ijmhr-0-f59d75a1bfaa667d7e3624e920de30fe)
图1-2-7
![](https://epubservercos.yuewen.com/A510EC/26764229109737206/epubprivate/OEBPS/Images/43604_20_3.jpg?sign=1738868910-sOLiC6roGIHAPBCA6lOqNIg1OHB5e6Df-0-6eead89dda3e549c1e72ffd7fe6d15cf)
图1-2-8
图 1-2-9 所示为误差方差的莱文等同性检验表。本案例中的显著性大于 0.05,表示每个因变量在不同水平组合中方差齐性。
![](https://epubservercos.yuewen.com/A510EC/26764229109737206/epubprivate/OEBPS/Images/43604_21_1.jpg?sign=1738868910-xtI9iHkwZb3pL7504ymsXh82Ip4F71oa-0-378fec97997176d059b16dc60c645028)
图1-2-9
多变量检验表如图1-2-10所示,显著性小于0.05,表明不同的舞蹈学校对“感情表现得分”和“动作标准得分”的影响均非常显著。当 4 种检验结果不一致时,一般选用相对保守的“威尔克Lambda”或“霍特林轨迹”参数来确定显著性。
![](https://epubservercos.yuewen.com/A510EC/26764229109737206/epubprivate/OEBPS/Images/43604_21_2.jpg?sign=1738868910-87ThwL0xFg0K56HdgAceAJiWEfhMIGyR-0-bdafe7e164ba8095046ebc0892afc91c)
图1-2-10
如图 1-2-11 所示,在显著性为 0.05 时,不同的舞蹈学校对“动作标准得分”的影响显著,对应的显著性为0.012;对“感情表现得分”的影响显著,对应的显著性为0.007。
![](https://epubservercos.yuewen.com/A510EC/26764229109737206/epubprivate/OEBPS/Images/43604_22_1.jpg?sign=1738868910-qGTZ3YmiDd5JDbn3j9CoWFkLs2rmQ0Wr-0-2cfa676d67f3f7d13ca4b7335ee99d29)
图1-2-11
如图 1-2-12 所示,其中的*表示该组均值差是显著的,可以看出,对于“动作标准得分”和“感情表现得分”,不同的舞蹈学校的影响是显著的。
![](https://epubservercos.yuewen.com/A510EC/26764229109737206/epubprivate/OEBPS/Images/43604_22_2.jpg?sign=1738868910-0UQpvqkvdcAevwzqHteeKb31PHjYFn6n-0-55dc5ce4d7c56bc2fad1d2858dcef3c5)
图1-2-12
通过多变量方差分析,我们知道:
●“动作标准得分”和“感情表现得分”在各组的总体方差相等。
● 不同的舞蹈学校对“动作标准得分”影响显著,对“感情表现得分”影响也显著。
●“感情表现得分”在分组 1 和分组 2、分组 2 和分组 3 之间有显著性差异,在分组 1和分组3之间无显著性差异。
●“动作表现得分”在分组 1 和分组 2、分组 1 和分组 3 之间有显著性差异,在分组 2和分组3之间无显著性差异。