![沼气液化制取生物质LNG技术](https://wfqqreader-1252317822.image.myqcloud.com/cover/772/41807772/b_41807772.jpg)
2.2.1 相平衡计算方程
状态方程是计算混合气体相平衡的有效方法。相平衡计算的目的是确定混合气体处于气、液平衡时压力、温度及气、液相组成之间的关系,本章利用SRK、PR方程,采用C语言编程,计算液化系统中的压缩因子、闪蒸气体的气液相平衡比,对结果采用误差分析法确定计算的正确性。
(1)逸度和逸度系数
逸度是压力、温度变化引起的Gibbs能的变化,即
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P053.jpg?sign=1738858898-bs6oMJ8YlkcipQdSvXWhel7wgYibWqD6-0-5fa1a40854748e3e2189b507294986b8)
恒温下的理想气体
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P054.jpg?sign=1738858898-6ZsBYaF0tfiBjpkYg7kk2MMo8fG7XTV9-0-4ffd554c8714590a236847e7f4dc22fc)
在恒温条件下,1mol纯气体的化学位可表示为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P061.jpg?sign=1738858898-oDt4QplxAXuYJfbXYJXEojDB4qenPr8C-0-c2e0a68675d9db4caab9ca87e0a2cecf)
式中,μ0为标准化学位。
理想气体,则式(2-20)可写成:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P060.jpg?sign=1738858898-UNyOb4tna0xYEUM5sCjTmDn8Vof9aTxt-0-b8f344f11367f8d50abee19a929acdbe)
式(2-19)不适合真实气体。G.N.Lewis提出以逸度f代替压力,用在实际气体中:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P062.jpg?sign=1738858898-hWyu5hH2iT3oBQmOBvRS06kBdyR5K7bj-0-2d5d6514d138a21ed2083a7742abc933)
当压力很低时,逸度等于压力。因此
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P065.jpg?sign=1738858898-z7ro2oyKu4DagdUh5D1g7KmzRdLU0TiB-0-fa581bef8b12d591ad63c4dcb6994e8f)
对于真实气体
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P067.jpg?sign=1738858898-mW0j9BQkVISrkU1NCMnwfNR1snN1p6Bh-0-4461d99f98d3c5e1cf62f0d64417e4a2)
式中,ϕ为逸度系数,是压力p的函数。由式(2-23)可知,理想气体的逸度等于它的压力,即ϕ=1。而真实气体,ϕ可大于1,也可小于1,将式(2-22)和式(2-24)合并后可得:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P059.jpg?sign=1738858898-fgaFehADHIlsEP9crRG2ix5YswnObjCN-0-00b967a6f5986979860d92fe33cd2e7d)
积分得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P064.jpg?sign=1738858898-5xnA38CPII5bwGWYmx3eL7Hak3nE7JCx-0-dc7036f66edd520a8988b9c44617996d)
将代入式(2-26),并改写为:p (2-27)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P063.jpg?sign=1738858898-swH4kPUjWUCAGGiV5zSyAhZ4OpCcYnL2-0-10628edc8b61f9d13614b445af936dda)
当p0→0时,p0=f0,则上式变成:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P058.jpg?sign=1738858898-VyWhXDAzjf0U39U1Ti2QrlXPsCJzO985-0-a6147b773533d226ddc4d2e12115b157)
将上式改写为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P057.jpg?sign=1738858898-MF0zTyTTosLKj791ez0KqYRgM64mLj9x-0-ee7876627e95b0aa75b2f6da8d20a0c5)
把式(2-28)右边第一项改为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P069.jpg?sign=1738858898-iG6Nt1B796Fj1hfkF1E02y5SkhcUMRLU-0-d5dbf64f53295d9da5d2f5e3ba3a36d4)
将纯气体的PR方程代入式(2-28)得:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P071.jpg?sign=1738858898-rOhKuXuxpOoeG71Ki8kOWmBHaEYrtiRy-0-be722d74c9d201e8b7996b3952107f3d)
合并式(2-30)和式(2-32),得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P074.jpg?sign=1738858898-ujfHYojN4C1HtbmQerFKF9ooBpyTdria-0-8d86320c3bfc64ab21443e0495fe3e62)
因为pv=ZRT,p0v0=RT,故
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P068.jpg?sign=1738858898-npb0jGBy2Q8bre5HOW1UEY5C9l5RIn0Y-0-283ad31e3560cd46722c93a6ed284ec5)
当时p0→0、v0→∞,,
,式(2-34)可-(2-1) bv0表示为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P072.jpg?sign=1738858898-SjXztm2QTPkGhlxdhWeu5aNIRUvA9540-0-27a9c4527bc09835f4ac2b8e49026717)
又因为
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P076.jpg?sign=1738858898-D6d5vphW9o1aS6sEi6XP4uzI2XS2qBDZ-0-52adfc7ea47544e7b00e0f9b3cf69e36)
代入式(2-35)可得纯气体逸度:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P070.jpg?sign=1738858898-Zvi4MfpFCx9RyPrrgCssHS4l8JrPCt8a-0-737e423099d710816e00ef842f01a074)
气体混合物的组分逸度:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P079.jpg?sign=1738858898-pdmD2CAltejmkfYnPyyIqCT4bVAwhTnB-0-0cc1becb192f8bde1855b0186481a805)
在温度T、组分yi不变的情况下,由式(2-19)得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P082.jpg?sign=1738858898-n8bynZPMMH9Fq22cWy53f1Vad6z3qCQn-0-0898aed628631d2ef337d0f677942f1c)
将式(2-38)代入式(2-37),即得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P084.jpg?sign=1738858898-iee5UGT7FsZsvL4uPZTXsD8Q7QhOouDY-0-12b37cf9e2e563de245dc10d5925b47b)
将式(2-39)从0到p积分,同时将代入上式,则得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P088.jpg?sign=1738858898-Comx0qkbZAJ3g9JvH69MASlporRixNwQ-0-0c4f3678555d88ef586bde7763eb4150)
上式改写成
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P089.jpg?sign=1738858898-JHS5sGiEHV9pJiNnDJAvDzw55i5mOAXo-0-a824b112a3f01a659d596c5141d79487)
(2)混合气体的PR方程
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P080.jpg?sign=1738858898-pnTmr0RiMTh0pE2bItHacozNihXPUvoP-0-ce787945000005ade6f8d95a76d19d46)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P083.jpg?sign=1738858898-RjKkerlyODBQzYXn9tlCgg7I7OqSVSjv-0-1890007b3dac55ab77ae1008eb477db1)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P085.jpg?sign=1738858898-jOUk17SK2sm8KoR2JQHeUIVQRrKkdnl5-0-2c43296795f1daecb28bac19c3f0a669)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P087.jpg?sign=1738858898-mXplKerxG5JvB1nzhS9k4iIzY1IU8YYg-0-6bbd0ec416af3b6a543e19babf228036)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P077.jpg?sign=1738858898-6tlw1R4ZbbHvCKvBYOnC1d3fI71rg93d-0-4567733cdc747299010b10499fb81661)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P078.jpg?sign=1738858898-PGSqqGRrbLeU8tKoOhplbX4VxitRphds-0-53406082643036b46a93c6b1bd988d6f)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P081.jpg?sign=1738858898-7vmT30nQQJfUqTYwCY98JAf2yQqoDwza-0-101add1aff8df8de351f37203b7c16d7)
式中 Tc,i——组分i的临界温度,K;
pc,i——组分i的临界压力,Pa;
Zi——组分i的摩尔分数;
Zj——组分j的摩尔分数;
wi——组分i的偏心因子;
Tr,i——组分i的对比温度,K。
PR方程用压缩因子方程:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P093.jpg?sign=1738858898-Tv4sop0vaGLSwskLpNKYLpw2dhqafig2-0-4d1a1dddc5a941c4d110b83b97c8e783)
式中,Z=pv/(RT),B=bp/(RT),A=aβp/(RT)2
PR方程计算的逸度系数方程:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P092.jpg?sign=1738858898-RL3ks12XfkFDkubgGeTXXdMQdPk4I5sA-0-a3700ee99b3cc6bd99a2fcbe5bc3ae44)
PR计算式中其他的参数同SRK方程,计算液相逸度系数ϕi,l时,Zi为xi,计算气相逸度系数ϕi时,Zi为yi。
对于纯组分、单相混合物,式中只有1个实根,等于该相的压缩因子;在两相区,有3个实根,最大的为气相的压缩因子,最小的为液相压缩因子,中间无意义。
(3)混合气体的SRK方程
对于多种混合气体成分,SRK方程计算式为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P090.jpg?sign=1738858898-d0AIeHCMpr3efPGiNNBaLjGhrpwFNzqC-0-0bc656da2d3688c2049d078c4d61016d)
式中 p——平衡分离压力,Pa;
T——平衡分离温度,K;
R——摩尔气体常数,R=8.3145J/(mol·K);
Vm——摩尔体积,m3/mol。
a的计算式为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P091.jpg?sign=1738858898-423jVnav2LzT1EvMujKbROeOaKxaFEJp-0-a7c43424e7c68e15859fb5565247354d)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P095.jpg?sign=1738858898-NeYy4NDD9NEfutejS4N6CyGoW9ept3VH-0-42191817c6c395c885736d37f13ef4e5)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P094.jpg?sign=1738858898-YRUsmiYcjwfmTWgZX5eMRCachS65Svn2-0-0c3edca35a214a8f240d293ed383fdf6)
式中 Tc,i——组分i的临界温度,K;
pc,i——组分i的临界压力,Pa;
Zi——组分i的摩尔分数;
Zj——组分j的摩尔分数;
wi——组分i的偏心因子;
Tr,i——组分i的对比温度,K;
Kij——二元交互作用系数。
b的计算式为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P098.jpg?sign=1738858898-MVwdkQ9Hd9TRSi6ehCKfHdirMjrFwWu2-0-93ed4880ea9956f38f27599210eb470f)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P099.jpg?sign=1738858898-KgGR3ZrNAaJcnZvnHlPmAccesW7aZU3m-0-2faba020650b0d76cd3c554109583573)
SRK方程的压缩因子方程为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P101.jpg?sign=1738858898-5QgTlFAp8rM7tedMlAr4AsUkkS1fkZhO-0-5513eaee8a0295b32dd9cfb280df8411)
式中,压缩因子Z=pV/(RT) (2-58)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P096.jpg?sign=1738858898-SyAKNSFWAQ127BcX5Gz4vLYeRITdUDfg-0-ba138ba69c16e9ef755c86ccbdfd9f50)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P103.jpg?sign=1738858898-1B5PYwzQAPNpBc8wtqEUYtCHWvaIEWrj-0-3ce746ce072032562c5c1769057ce91a)
SRK的逸度系数方程:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P097.jpg?sign=1738858898-aBHgANjSsg9180zkECtsRLICCyK3kwrG-0-7089bdb7deacc031cdbc0d0f5c16dd93)
式中,ϕi是组分逸度系数。
在计算中,已知xi、yi时,计算组分i的气相逸度系数ϕiv时,Zi=yi;计算组分i为5的液相逸度系数ϕil时,Zi=xi。