![电工电子技术基础](https://wfqqreader-1252317822.image.myqcloud.com/cover/5/40681005/b_40681005.jpg)
3.3 单一参数的交流电路
由于正弦交流电路稳态工作时的电流、电压都是随时间按正弦规律变化的,因此,正弦交流电路的分析计算不仅与电阻元件R有关,而且与电容元件C和电感元件L有关。即在分析计算正弦交流电路时,必须分析R、C、L单一参数特性及正弦响应特点。
3.3.1 电阻元件的正弦响应
1.电压与电流的关系
在交流电路中,通过线性电阻的电流和电压,在任一瞬时都遵守欧姆定律。
如图3.3.1a所示电阻元件R,其电压、电流为关联参考方向,则有
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/73_01.jpg?sign=1738862112-xi353T4l84QQvNQ2Yh6OaO7fEiIwIgFq-0-b41563d33630fd47fa08272ed9252995)
若电流i(t)=Imsinωt,则
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/73_02.jpg?sign=1738862112-ltUI5gig2e3pJnHCfsXMrM12bKhdMjtS-0-700f7ab8d0e2c909f94e7ae90229bf58)
式(3.3.2)表明,电阻元件电流及其两端电压都是同频率正弦量。下面分别讨论它们之间的数值及相位关系。
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/73_03.jpg?sign=1738862112-YfHgJ8zGsX3Hr0BTm01IteNYt7c0e3P5-0-aa7fb3b32db3ea9980330337557d4771)
图3.3.1 电阻元件电压、电流波形图、相量图及瞬时功率波形图
a)电阻元件 b)电压、电流波形图 c)相量图 d)瞬时功率波形图
数值关系:由式(3.3.2)可得电压、电流最大值之间关系为
Um=RIm
有效值之间关系为
U=RI
相位关系:电压u与电流i同相位。波形图如图3.3.1b所示。
综上所述,可得电阻元件电压、电流之间的相量关系式为
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/73_04.jpg?sign=1738862112-7DUyUijFVDvCPPBTZZYuDwHjtxNcefUv-0-e43d777d1e1e943302134b2665b023a1)
式(3.3.3)同时表示电压与电流之间数值与相位之间的关系,相应相量图如图3.3.1c所示。
2.功率
任意时刻的电压、电流瞬时值的乘积称为瞬时功率,用p表示。电阻上消耗的瞬时功率为
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/73_05.jpg?sign=1738862112-ZuXBWBfchcBmj0dPIIUjmj91TjQswOD0-0-41bddae49a959aaa1c6c540b97434a01)
瞬时功率p的波形图如图3.3.1d所示。由于电压u和电流i同相,即同时为正或同时为负,因此瞬时功率p总是正值,说明电阻在每一瞬间都从电源吸收电能,电阻是耗能元件。
瞬时功率在一个周期内的平均值称为平均功率,用P表示。有
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/74_01.jpg?sign=1738862112-mIANIyIAMxai88NH17OT56gl6e2qMhxU-0-eb42a60dba3019ae2153cffc7a5fe719)
可见,电阻消耗的平均功率等于电压和电流有效值的乘积。
3.3.2 电感元件的正弦响应
1.电压与电流的关系
如图3.3.2a所示电感元件,其电压、电流采用关联参考方向,已知其伏安关系为
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/74_02.jpg?sign=1738862112-PUJ7Tpsyk4FL4VyB8mLWBOkVJ1OesGZH-0-af61eb9703b1f97c4d2c7a16100d23ad)
假定通过电感元件的电流是正弦电流,即
i(t)=Imsinωt
则电感元件两端电压为
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/74_03.jpg?sign=1738862112-fwfsO3j9Y86dmIU65z7vcEfj1Nr6uEc9-0-4686b758b510282ee30abb2ef2166d1f)
由此可见,电感元件的电压和电流也是同频率正弦量,下面分别讨论它们之间的数值和相位关系。
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/74_04.jpg?sign=1738862112-24nMg0eq7BDoYaYPJyMUGT19P7GJT3Jj-0-1d7ed3b7bb43b0446f6fd32a43a352d8)
图3.3.2 电感元件电压、电流波形图、相量图及瞬时功率波形图
a)电感元件 b)电压、电流波形图 c)相量图 d)瞬时功率波形图
数值关系:由式(3.3.5)可得电压、电流最大值以及有效值之间的关系分别为
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/74_05.jpg?sign=1738862112-3nBbJQ04KvB3nhLf1q25lQbuNCo8Oajp-0-63f71d87276b7de3e06b265ea102716f)
其中,XL=ωL=2πfL是电感电压和电流有效值(或最大值)的比值,称为电感的电抗,简称感抗,其单位是欧姆(Ω)。
感抗与电源频率f成正比,它是表征电感元件对交流电流呈现阻力作用的一个物理量。利用电感线圈在高频时感抗大的特点,可做成扼流线圈,以阻止高频电流通过。
对于直流电流,因f=0,其感抗XL=0,所以在直流稳态时,电感元件相当于短路。
相位关系:电感上电压与电流之间出现相位差,且电压超前电流90°,或者说电感电流滞后电压90°。其波形图如3.3.2b所示。综上所述,电感相量式为
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/75_01.jpg?sign=1738862112-JbjFiJN1fccLlszPQXtfP8LE44iXAo07-0-69a2c714754faee95f45e0c218252133)
相量图如图3.3.2c所示。
2.功率
纯电感的瞬时功率为
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/75_02.jpg?sign=1738862112-OxX1ptEOkck3Lb1iVwXwoJcfWkt3kUtw-0-4c9db22806f7c68b26a68f58f90125f5)
瞬时功率p的波形图如图3.3.2d所示。由于电压u超前电流i相位90°,因此电压u与电流i的瞬时值在第一个和第三个周期内同时为正或同时为负,瞬时功率p为正值;在第二个和第四个
周期内不同时为正或不同时为负,瞬时功率p为负值。在一个周期内,瞬时功率p一半为正、一半为负,说明电感从电源吸收的电能和向电源回送电能的量相等,电感是储能元件。显然,纯电感的平均功率为零,即
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/75_05.jpg?sign=1738862112-zG0j3HNvfZTBQcznNQJQUrUcxxzQUGAB-0-afea5c4a237a2545206ab6c8653421ca)
纯电感负载在交流电路中不消耗能量,只是与电源进行能量互换,其互换能量的规模用无功功率来反映。无功功率等于瞬时功率的幅值,用符号Q表示,单位是乏(var)或千乏(kvar)。即
Q=UI=XLI2
与无功功率相对应,平均功率一般称为有功功率。
3.3.3 电容元件的正弦响应
1.电压与电流的关系
图3.3.3a所示为电容元件,在电压、电流为关联参考方向时,其伏安关系式为
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/75_06.jpg?sign=1738862112-85m6GTtiVINIEUDP7vf8FmOxPdvWo1hd-0-fac63e6e8d297a330c1c93ea778f92f1)
若电容两端接入正弦电压u(t)=Umsinωt,则通过电容元件的电流为
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/75_07.jpg?sign=1738862112-RzzF1eYK2mqPTf64QDkNpL1J1NELkWit-0-4954dc94ba8d8c1c7d9ba9ac0b9e8955)
由式(3.3.9)可见,电容元件的电压和电流是同频率正弦量。它们的数值关系和相位关系如下。
数值关系:由式(3.3.9)可得
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/75_08.jpg?sign=1738862112-kR1bjzQpmFTI4VcfdTnLgC6pxppKLWU7-0-e14e1d8cc1da787d7409cbbdf6918f43)
用有效值表示为
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/75_09.jpg?sign=1738862112-AXMMFguXy0dqnbDdFqYLnBNd9oNAsspD-0-a32e2bd1c261cbbbe6ffcbd4d05be69e)
式中,XC=是电容电压与电流有效值(或最大值)的比值,称为电容电抗,简称容抗,其单位是欧姆(Ω)。
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/76_01.jpg?sign=1738862112-BpZnCFWp2yJDQxeQBpPX5KY0OR6XQxUi-0-492e270fdcf24a9f4fd21ad1b69c881d)
图3.3.3 电容元件电压、电流波形图、相量图及瞬时功率波形图
a)电容元件 b)电压、电流波形图 c)相量图 d)瞬时功率波形图
容抗与电容C、频率f成反比,是表征电容元件对交流电呈现阻力作用的物理量。电容元件对于高频电流呈现的容抗较小,使较高频率电流易于通过。对于直流电流,其频率f=0,所呈现的容抗XC=∞,可视为开路。因此,电容元件具有隔断直流的作用,这种“隔直作用”在电子电路中经常用到。
相位关系:电容电流超前电压90°,或称电容电压滞后电流90°,波形如图3.3.3b所示。综上所述,可得出如下相量式:
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/76_02.jpg?sign=1738862112-TopKl58qNfCgMWuVWoM5PYxc7iqMAqUh-0-b74b590d37cf6b26027da225b5f0ff9a)
式(3.3.12)表示电容电流与电压有效值之间及相位之间的关系,其相量图如图3.3.3c所示。
2.功率
纯电容的瞬时功率为
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/76_03.jpg?sign=1738862112-mNtNHTQDJUI3lWkAgWpLD95LRN8Rmq9B-0-8a41efc9d1095a5e8ceced41806cb7c9)
瞬时功率p的波形图如图3.3.3d所示。由于电流i超前电压u相位90°,因此电流i与u电压瞬时值在第一个和第三个周期内同时为正或同时为负,瞬时功率p为正值;在第二个和第四个
周期内不同时为正或不同时为负,瞬时功率p为负值。在一个周期内,瞬时功率p一半为正、一半为负,说明电容从电源吸收的电能和向电源回送电能的量相等,电容是储能元件。显然,纯电容的平均功率为零,即
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/76_06.jpg?sign=1738862112-dHOeAIKAcRTcWZnSvhawod3UrSLntfWk-0-b2f92d086eb1f006e3cdff3b1416a4b9)
纯电容负载在交流电路中不消耗能量,只是与电源进行能量互换,其互换能量的规模用无功功率来反映,即
Q=-UI=-XCI2
即电容性无功功率取负值,电感性无功功率取正值,以资区别。
例3.3.1 电路如图3.3.4a所示,已知R=3Ω,L=2 H,iS=sin2t,试求电压u1、u2、u及其有效值相量。
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/77_02.jpg?sign=1738862112-tLYeoRS5z1qsqphOTLsECfQjLB4s1jqG-0-d27ad126b41443b6fa29e8fbbe9d7aa5)
图3.3.4 例3.3.1电路图
解:根据图3.3.4a,可画出图3.3.4b所示相量模型。
已知=
=1∠0°,则
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/77_05.jpg?sign=1738862112-8i75L096z6UXoTivjAf1Pt8ulQZZ8s8b-0-b280d6379fa611505e6b964c09938bc7)
相应电压的瞬时值表达式为
![](https://epubservercos.yuewen.com/4D5AC7/21122066708962306/epubprivate/OEBPS/Images/77_06.jpg?sign=1738862112-Z1Fpe6TKomfRYFLP0xjRTA5yWwLmWsxh-0-577793741a86c07c754c98fbf2e84cda)
特别提示
电阻元件上的电压和电流频率相同、相位相同,电压与电流的最大值与有效值之间的关系为Um=RIm或U=RI。电感元件上的电压和电流频率相同、电压相位超前电流90°,电压与电流的最大值与有效值之间的关系为Um=ωLIm或U=ωLI。电容元件上的电压和电流频率相同、电流相位超前电压90°,电压与电流的最大值与有效值之间的关系为Im=ωCUm或I=ωCU。
【练习与思考】
1)在正弦电流电路中,如果选取关联参考方向,则下列u、R、i表达式中哪些正确,哪些错误,并改正。
① i=;② I=
;③ i=
;④ i=
;⑤ I·=
2)在正弦电流电路中,如果选取关联参考方向,则下列u、L、i表达式中哪些正确,哪些错误,并改正。
① i=L;② i=
;③ I=
;④ I=
;⑤
;⑥
3)在正弦电流电路中,如果选取关联参考方向,则下列u、C、i表达式中哪些正确,哪些错误,并改正。
① i=;② I=
;③ I=ωCU;④
;⑤
;⑥ i=
;⑦ i=