上QQ阅读APP看书,第一时间看更新
Training the random forest
Training the random forest model is not very different from training the decision tree:
In []: from sklearn.ensemble import RandomForestClassifier rf_model = RandomForestClassifier(criterion = 'entropy', random_state=42) rf_model = rf_model.fit(X_train, y_train) print(rf_model) Out[]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_split=1e-07, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1, oob_score=False, random_state=42, verbose=0, warm_start=False)