![非线性系统加权观测融合估计理论及其应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/251/27741251/b_27741251.jpg)
2.1 递推线性最小方差估计框架
考虑如下非线性系统
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_42_1.jpg?sign=1738924444-L2d2eCyHoX0esPUbwp0SZI6wPiYbIXZl-0-eea5c3df0c4528e43a5c336112e47983)
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_43_1.jpg?sign=1738924444-mK92b7rPzXokqG8X9s9HOGo80zamIPO5-0-9efe590ff4d7dbe0f3705a9ba8f8efb2)
式中,f(·,·)∈Rn为已知的状态函数,x(k)∈Rn为k时刻系统状态,h(·,·)∈Rm为已知的传感器观测函数,z(k)∈Rm为传感器观测数据,为系统噪声,
为传感器观测噪声。假设w(k)和v(k)是零均值、方差阵分别为Qw和R且相互独立噪声,即
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_43_4.jpg?sign=1738924444-I02BZI6by2PyOK4w9cdsMtqisFWKdfyH-0-0a75c7b51026b2be199c6fd64f0df315)
式中,E为均值号,T为转置号,δtk=0(t≠k),δ(·)是狄拉克函数(Dirac Delta function)。
问题是根据已知观测数据Z0~k={z(0)~z(k)},求解状态x(k)的估计。
2.1.1 射影定理
定义2.1[14]基于m×1维随机变量z∈Rm的对n×1维随机变量x∈Rn的线性估计记为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_43_6.jpg?sign=1738924444-bi2eDo08rxd1zJ5nwEwFqAyPd03GZXV5-0-e0a5f2916559b38c0705f782f2a6b952)
若估计极小化性能指标为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_43_8.jpg?sign=1738924444-9AF2XWGE17xcZROMEOGesy8HLgweW2i8-0-8eaacf45908dc8ddbc6271de14c8e5e5)
则称为随机变量x的线性最小方差估计,式中E为均值号,T为转置号。
定理2.1[14] 基于z∈Rm对随机变量x∈Rn的线性最小方差估计公式为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_43_10.jpg?sign=1738924444-8tXubCZzV8JDFhYUFKSv7vkN3Xxw9peX-0-5fc315a45739711ae0282a82fd0d1fe3)
其中假设Ex、Ez、Pxz、Pzz均存在。
证明:将式(2-4)代入式(2-5)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_44_1.jpg?sign=1738924444-KPoUKZeZqr17ufW1qLBeSnfVOUvB7q2E-0-20992d0bcb55bef9ceb5cd47dd54f5a4)
令有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_44_3.jpg?sign=1738924444-Id8ARLTMVHkGljFrIjT5CqBHqwZCT0cP-0-ea082c855730e2c7cf105653c34574bc)
所以有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_44_4.jpg?sign=1738924444-TfUpfupDY8CWhTprWiPDLjwPdIiQ1vqJ-0-2d1ad82d04d52893c12eb9819b862350)
将式(2-9)代入式(2-7)并定义
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_44_5.jpg?sign=1738924444-ukHaN0beWiGXotwbi42j5tYLahE9FOQF-0-3901323b7af0c672a1400568b83ce80b)
可有关系
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_44_6.jpg?sign=1738924444-1wSVOMHeNFmJLW50p1mNkGHw2DebLqsm-0-fe28b4ccdcada3fbe5080fa738cb1562)
令,应用矩阵迹求导公式[152],并整理有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_44_8.jpg?sign=1738924444-h5W20AqFJTQ26bo0x6FLdkZLHhp5w6zG-0-d71695a92f72260d281bac183e7fa5ef)
证毕。
推论2.1[14]
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_45_1.jpg?sign=1738924444-diIWAfFOxreukg8ciT8lfxJ1h6Yqg9yJ-0-7a6521b135a734e2613bcb5eb0a8eecf)
证明:由式(2-6)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_45_2.jpg?sign=1738924444-ScEGOzKGcSKLJUJVgRVx3U9dyQDANTNf-0-2285c06ff82dbe3e177f3605cdbfc430)
证毕。
推论2.2[14]
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_45_3.jpg?sign=1738924444-tYMjDVYhvsjwp0E9Cao9A78K63RtXhMV-0-d748989085a155334d3d260a50c5f5d5)
证明:将式(2-6)代入式(2-16)左边,有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_45_4.jpg?sign=1738924444-n5biOuFgtBjfwTrAuxQSIAbKS6oPMJxU-0-069c40ba9dfc759c9de460343414dcec)
证毕。
推论2.3[14] 与z不相关。
证明:
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_45_6.jpg?sign=1738924444-FzUQOHyOLR2XXTItDRAvscvuc4vNoBca-0-6e61754e53ba2daa0ff050c928824fe8)
证毕。
定义2.2[14] 与z不相关称为
与z正交(垂直),记为
,并称
为x在z上的射影,记为
。
定义2.3[14] 由随机变量z∈Rm张成的线性流形(线性空间)定义为如下形式的随机变量z∈Rn的集合
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_1.jpg?sign=1738924444-XrbVzz4MLd0CXD9QTI0Au5R1pAtsOGLe-0-fe475c056530b3edc53a9ad766bc8dfb)
推论2.4[14]
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_2.jpg?sign=1738924444-nF6h7ZVL1RT1CWsrJLZ9n7bW7t4s0kbT-0-a006210669e28d35b2a9c19f47ecdbb2)
证明:
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_3.jpg?sign=1738924444-to32ZRntz65nRX3nowCW4GzpSxN6hxSD-0-29d40a4ab4f1b970c727fc109684a839)
证毕。
定义2.4[14] 设随机变量x∈Rn,随机变量z(1),…,z(k)∈Rm,引入合成随机变量ϖ为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_4.jpg?sign=1738924444-5AuAqsGAraQVWuGvHJ5NbTYh1JOUt03M-0-bcaad6de7292f0ee221cb564dd21978c)
由z(1),…,z(k)∈Rm张成的线性流形L(z(1),…,z(k))定义为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_5.jpg?sign=1738924444-Y3sMHBWAVtCqKO8JlUBPPFRLS41K6fZs-0-8397dde475fe26b67f5c5f518bc56b4d)
引入分块矩阵
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_6.jpg?sign=1738924444-wfc91dYf7beOKYEOVzZQIviKwnzOpbW9-0-556c6acd9bc9cf73e22cbd5260377d41)
则有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_7.jpg?sign=1738924444-QgzzIyqxtLa4w0qiazutv9PtyrkJtkNr-0-129a68b8664a8d811f6c0a34ce1b2b21)
定义2.5[14] 基于随机变量z(1),…,z(k)∈Rm对随机变量x∈Rn的线性最小方差估计定义为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_8.jpg?sign=1738924444-fi4GN2amiVYjpFDfG0prDOI9vaQINJSF-0-73ea246ebb87a67ec0b10e6581441e42)
也称为x在线性流形
或者L(z(1),…,z(k))上的射影。
推论2.5[14] 设x∈Rn为零均值随机变量,z(1),…,z(k)∈Rm为零均值、互不相关(正交)的随机变量,则有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_47_3.jpg?sign=1738924444-DZxcO7p7B5SYSgdfKNBYIZSdFynILI9c-0-e1c2e878ca52c1a55cd7ff8f894b6103)
证明:
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_47_4.jpg?sign=1738924444-PDNYNvzsmEN88vXVYMkYD9rHG40otbVY-0-33394c0b692577f2492ac02ea7daf804)
推论2.6[14]设随机变量x∈Rp,y∈Rq,随机变量(Ax+By)∈Rn,A∈Rn×p,B∈Rn×q,随机变量z∈Rm,则有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_47_5.jpg?sign=1738924444-z7b9shzK4ThuYs7iNJZKIGErCkSOEZCx-0-3b922fc7964b70f7c0dc05684edbd709)
推论2.7[14] 设随机变量x∈Rn,随机变量z∈Rm,则有关系
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_47_6.jpg?sign=1738924444-aGUYl1YCQ5Qb1zB7ctbhMEcKzLvWcWmx-0-9d69e8babf8202d5ca1429e82fc9bae5)
其中x的分量形式为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_48_1.jpg?sign=1738924444-JXR4AwnJsPbSixMLkQxf2hlglTjYHZEu-0-16ecc6e5b53930ffb69ce6f5d12d1f54)
证明:
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_48_2.jpg?sign=1738924444-mbxhO8BcXHXxKxnBKEtvqM1O4OiSp5tT-0-6efa7cba7ff145dc077c551ce5a6b68c)
即得到式(2-28)。证毕。
2.1.2 新息序列
定义2.6[14] 设z(1),…,z(k),…∈Rm是存在2阶矩的随机序列,它的新息序列定义为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_48_3.jpg?sign=1738924444-1sbkz2L4TGcHlIQ0Z7SAf4En0dcKAR5F-0-e8d783129306add0d39af63ebf167f5e)
其中z(k)的一步最优预报估值为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_48_4.jpg?sign=1738924444-HfCmrpNJGojFxckEUjOw00Nvr4Zgdtpk-0-fea453764263c48df57eb19ae46bc432)
因而新息序列定义为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_1.jpg?sign=1738924444-w5DSzFbC6dobihUoIGqjP5xxxIQ2LQPP-0-75a82dd4afdf593ed8fe1a0b82389a6d)
其中规定,这样可以保证E{ε(1)}=0。
定理2.2[14]新息序列ε(k)是零均值白噪声。
证明:由新息序列定义式(2-33),有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_3.jpg?sign=1738924444-RLwMNttXPIK5U8LdMqt9LcoOR5T6Rl6H-0-b6ae7599afd18efa242b64e96dd2003f)
由推论2.1,可得
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_4.jpg?sign=1738924444-wygdtiyB4nVveiL9nFqDdQSDhtePm6ek-0-bf5a218f776e6897645c50a5afef5876)
设i≠j,可以设i>j,又由于ε(i)⊥L(z(1),…,z(i-1)),且有L(z(1),…,z(j))⊂L(z(1),…,z(i-1)),因此ε(i)⊥L(z(1),…,z(j))。
又因为ε(j)=z(j)-zˆ(j|j-1)∈L(z(1),…,z(j)),因而ε(i)⊥ε(j),即
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_5.jpg?sign=1738924444-MfvqEz1bnWkQQglIndSaerE6C8qkDxfg-0-06ffcb46c680f6167a69ca8d88839d90)
故ε(i)是白噪声。证毕。
定理2.3[14]新息序列ε(k)与原序列z(k)含有相同的统计信息,即(z(1),…,z(k))与(ε(1),…,ε(k))张成相同的线性流形,即
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_6.jpg?sign=1738924444-9Y2rlxgGPCNEeKGYPvTiLWaJxEauLNRE-0-4833546a1c975225b9fd437c5af9194a)
证明:由式(2-6)和式(2-32),每个ε(k)是z(1),…,z(k)的线性组合,这里引出
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_7.jpg?sign=1738924444-O7Pl108sdH02iRXeJUCcWV8y6TBZD2oD-0-6b32b6739bae2e8d949def7c41c23ff8)
从而有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_8.jpg?sign=1738924444-9UrLFgh4DjokQM7QOPuBRriu1RPFMjYv-0-ca67924caefc8ff77175eb6e9d8fae9f)
下面用数学归纳法证明z(k)∈L(ε(1),…,ε(k))。
由式(2-32),有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_50_1.jpg?sign=1738924444-xO7DNYYHJf9vCNOMZIPjMsZL7WKfUUos-0-7d255d8ae0eb29938b65ec442b8251b6)
故有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_50_2.jpg?sign=1738924444-QJEsalHvuGrPAEtAx7y8SwSzv9B9X4SL-0-d7f40e1191b5e365b895d1f320d0aa26)
从而有式(2-37)成立。证毕。
推论2.8[14] 设随机变量x∈Rn,则有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_50_3.jpg?sign=1738924444-ZokbhxoaHzuRDfheifafM5qxrt8u1cCx-0-d05b0b22045bce771deccea4a02d4260)
定理2.4[14](递推射影公式)设随机变量x∈Rn,随机序列z(1),…,z(k),…∈Rm,且它们存在2阶矩,则有递推射影公式
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_50_4.jpg?sign=1738924444-S6vk9d0n5B2SioAi6ZJLp64MHwgDTrz4-0-808340b239a4b5ce3eb7a322e464c7fe)
证明:引入合成向量
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_50_5.jpg?sign=1738924444-obV8Z4h5vwkxy2Ht7rdE0kzRkVBp4P79-0-b2da51ae7a86672e43850b5b262cd244)
有E{ε(i)}=0。
由式(2-42)和式(2-6),有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_51_1.jpg?sign=1738924444-AOuPzDeJkuQGck7yCJsIYTuH8yo93UNk-0-bfc1902400b7804abfc14d31960295e7)
证毕。
2.1.3 递推线性最小方差滤波框架
2.1.2节,在最小方差意义下,递推射影定理被给出。本节我们将给出一种具体的滤波估计框架。
定理2.5[116] 对系统式(2-1)和式(2-2),局部滤波器有如下递推滤波框架
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_51_3.jpg?sign=1738924444-YBqJhStVaeusDMn1EHiSGP360SyTaHge-0-9d0fe7ae8a633d6e236b35f35d98535d)
其中滤波增益为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_52_1.jpg?sign=1738924444-YB2t5yeUrkbdpp0Pyb2bIm3WKaNiRkpq-0-28d6faa0d11628f2ebd0041b8c5277f5)
滤波误差方差阵为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_52_2.jpg?sign=1738924444-9Ugvb42EaZrYO279Y0fcoYgiqpKKtvko-0-e0f31aec38c1267bbf374cb7b56408be)
其中
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_52_3.jpg?sign=1738924444-EkDZ4youpNmcv9d9sZkxsvLdCghlyiCT-0-69ce330ec33440e5ceca4ceef95fac6d)
预报误差方差阵P(k+1|k)为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_52_4.jpg?sign=1738924444-jKFBabQ4zbbfsAPJvEPlrFkJAwzjXKBl-0-fa8df39c35bcb8e2a710505d82c294d9)
证明:根据最小方差估计理论,一步预测是状态的条件数学期望,即有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_52_5.jpg?sign=1738924444-GAMld1rFOEOnpgJXF2v5MxldSjZI3Tq6-0-fed66042e4ef2975d9322df98820e86f)
可以得到式(2-48)。
即有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_52_6.jpg?sign=1738924444-ikJtZYVNHNw4uB7HaYXiyinAgWFPsiuM-0-341eb7286d05fc0bbcafb02200b75e17)
然后可以得到式(2-49)。
由预报误差协方差阵Pxz(k+1|k)定义有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_53_1.jpg?sign=1738924444-rolLBaHn1SPiwoSKEorVB0K1S3Uq8sER-0-97833882b6e3bcf766d725c8f4807c5e)
因为假设v(k)是具有零均值且独立的Gauss噪声,所以得到式(2-50)。
由观测误差协方差矩阵Pz(k+1|k)定义有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_53_2.jpg?sign=1738924444-kSxQGVPbXugbEanbjmsf02xd9zbaq6tH-0-8236bd557152261ec734f19c4a1b9877)
类似于Pxz(k+1|k),式(2-56)可以写为式(2-51)。
由预报误差方差阵P(k+1|k)定义有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_53_3.jpg?sign=1738924444-fLnnpoM5Iw2oFZzpg1zXF6xdPsqGHo5K-0-2a25e0c8a4b90fdb719657aa65eaed02)
可得式(2-52)。
将式(2-45)代入滤波误差协方差矩阵定义式,整理得
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_53_4.jpg?sign=1738924444-WVvXHQKzVLY208joIHVCBUIGXiSdQVRg-0-aaed1a32571946fdde35e6d91cdb7155)
基于最小方差估计准则,,可以得到式(2-46)。证毕。
2.1.4 Kalman滤波器
滤波是去除噪声还原真实数据的一种数据处理技术。Kalman滤波在观测方差已知的情况下能够从一系列存在观测噪声的数据中,估计动态系统的状态。由于它便于计算机编程实现,并能够对现场采集的数据进行实时更新和处理,因此Kalman滤波是目前应用最为广泛的滤波算法,在通信、导航、制导与控制等领域得到了较好的应用。
考虑如下多传感器定常线性随机系统[14]
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_54_2.jpg?sign=1738924444-BMh9JUC8K9UmnqSKpUPd7tf4BnQdF83w-0-d7601324b626421c4d1c7234c332d189)
其中x(k)∈Rn为状态,z(k)∈Rm为第j个传感器的观测,为观测白噪声,w(k)∈Rr为输入白噪声,Φ、Γ、Η为已知的适当维常阵。
假设1w(k)∈Rr为相互独立的,方差阵各为Qw和R的互不相关的白噪声,且噪声均值和方差统计为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_54_4.jpg?sign=1738924444-Wdw9JgmNIkWJqJnNeBUKc6EbMTJtHf3v-0-cc3afbb5a862f2e552934fc869067b57)
假设2x(0)不相关于w(k)和v(k)
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_54_5.jpg?sign=1738924444-ohLWS0E3v7edX7zLNBdyuXDghIvzcpay-0-204a0e382da925e9f3af0bfb112c25c4)
Kalman滤波问题是:基于观测Z0~k={z(0)~z(k)},求解状态x(j)的线性最小方差估计,它极小化性能指标为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_55_2.jpg?sign=1738924444-LIJnIDat8fjvwtnyeOaLW2c3bQJR5uz8-0-377836becc292e5c0b24ebaa7310d63a)
对于j=k,j>k,j<k,分别称为Kalman滤波器、预报器和平滑器。下面应用射影定理推导Kalman滤波器。
定理2.6[14] 系统式(2-59)和式(2-60)在假设1和假设2下,经典Kalman滤波方程组如下:
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_55_4.jpg?sign=1738924444-s1mi6i86BP4j4bMbJDLH7oi0xCIKoU5i-0-f4491f37eb7d61e283786f6ec7b328dd)
证明:由递推射影公式(2-43)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_55_5.jpg?sign=1738924444-r1y413FfoEAUiOAX15z7gjslgKgtX83J-0-afe0d9c85e9628f7e46edf22668e5541)
令
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_55_6.jpg?sign=1738924444-BrtSLBDJ9trreqdBk73lEVk16CEVav42-0-9e07a80a688ee1c186fd9397d6f93f78)
则有式(2-65)成立。称K(k+1)为Kalman滤波增益。对式(2-59)两边取射影有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_55_7.jpg?sign=1738924444-vz74pZiQIO1dSKGNar302smEKKuE9UYi-0-ac55d1175f579d30d0daf4adc59394f1)
由式(2-59)迭代有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_1.jpg?sign=1738924444-9TUN8eBXzDIU7bBp5egY6Y9CfjejFfSe-0-ba7ea89cebac3ecbaf61c38b63cef354)
将式(2-75)代入式(2-60)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_2.jpg?sign=1738924444-Xp6tfnWdgEzsHb1jlKz91VzOijjuBeOL-0-93ec77657f3f0d1a640d249f8902c334)
引出如下关系
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_3.jpg?sign=1738924444-E3OX5uNISpb6XoqAUp2IDsPpOJEebC6h-0-e666c41a9ccde28ff6176498621d0e3f)
由假设1、假设2和式(2-77)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_4.jpg?sign=1738924444-GZtBIZVCXUAVlhC0LZ5EpyuNyqidWLU5-0-d935c55ece420f9fe410f42d2b23b36e)
应用式(2-6)和E{w(k)}=q可得
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_5.jpg?sign=1738924444-eLE5hUlz2SUo6bE9lyieyRjCPNsKAZkL-0-c4eef1f564a6cdd287e5059e2742d7ff)
于是得到式(2-67)成立。
对式(2-60)取射影有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_6.jpg?sign=1738924444-Z2WdjuTf6UAQB0XgV6vVO6BfgtVnhfvh-0-73e9f1d765aceef53348ec9789740543)
由假设1、假设2和式(2-77)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_7.jpg?sign=1738924444-0oORyC4OFtmYDyVTlbeE76U4DuWMQmpB-0-e0c7f5db925b199bb035c089d62fdce3)
应用式(2-6)和E{v(k)}=r可得
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_8.jpg?sign=1738924444-LyPfmxIhFBIoTGqwffdljroexIQLgxkF-0-6af0d9196f961c00786e8536b87b40e4)
于是有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_9.jpg?sign=1738924444-qVU2ayxnzAN9FtnZnj6g9bo683PTWV2Y-0-dde303c04ac06b059ff8b5130ba7cf48)
将式(2-83)代入式(2-33),得到新息表达式(2-66)成立。
记滤波和预报估值误差及方差阵为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_1.jpg?sign=1738924444-KOBNM8Vg4wkllO3QKdGH5161JwtCybcz-0-822edd38e0945e7e71a1cb6aaa01c0b8)
则由式(2-60)和式(2-84)有新息表达式
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_2.jpg?sign=1738924444-i9RBHzQPOoDliDgU0owAcDv33ZhATC37-0-fef358629f1982714a451ce9af6af23b)
且由式(2-59)和式(2-67)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_3.jpg?sign=1738924444-WVQs1ecxvuOdMDyrZJv1bOyEo5gWXOSl-0-a835dc8478f47a103509bd2d726528df)
由式(2-65)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_4.jpg?sign=1738924444-mTmhEoZWABmgZKuQUHJfEiXB6uqY2y85-0-12f95ec7db1f5e76fdd0903378c93824)
将式(2-88)代入式(2-90)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_5.jpg?sign=1738924444-C6n0t9jiXg4YgqhwJaFvNBGyhP49vufS-0-719d275d72e3385148e060e19972c271)
其中In为n×n单位阵。因为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_6.jpg?sign=1738924444-ZDkadbkzsVHDvIA3WbFySgSzFBY41fRP-0-b883577c66795f04eeb7d53a10ee07df)
故有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_7.jpg?sign=1738924444-zOT8JxBUGdeOSbja6QEhRxoKXfp0IuSU-0-2e5bf83a1c420840e8c9742c6508bc92)
这里引出
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_8.jpg?sign=1738924444-3jOE2Yy7joLSR2bLwfqXnWfjd53EuFCT-0-e6ccff80bc7592a6321390a68e9906e9)
于是由式(2-89)得到式(2-69)成立。
又因为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_1.jpg?sign=1738924444-OGvzSSLAYmW0FmaygdF3JfKpEvoJ7Rii-0-6a08d07362e1f41b8d94252720db7346)
故有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_2.jpg?sign=1738924444-cFF1L2cdiUg5gtRlGWC7c07cKyzmyow2-0-dc0c3bebb41bc68fa5bbb964baa713f6)
这引出
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_3.jpg?sign=1738924444-CFehYevqTeQd3qciHZQz0t8jhqSiAzuR-0-6ade4f7611cef34f39208fb7790119c1)
于是由式(2-88)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_4.jpg?sign=1738924444-iA4fJEc0cMyaHppavbVCLU5ek2Dm4dP1-0-890c01d3a6a352de8d6610b26f0b7a3d)
且由式(2-91)可得
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_5.jpg?sign=1738924444-A9aflefYCqYDDA8r3UmBfXsX5yGbHBAz-0-57acc59197888e6cfd5b7ad40ffe4457)
由式(2-88)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_6.jpg?sign=1738924444-CKsC5fRlzWk1CpBLdMxJzs1NjOlZQVBK-0-8e1408de6f439512ffa872326d150302)
由射影正交性有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_7.jpg?sign=1738924444-DNf4dT09kJGiQZtJarrfBjilCEb7dS1o-0-577977ab377c9fa23d4bce57db424c9e)
且存在关系,于是由式(2-100)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_9.jpg?sign=1738924444-R5nPz8MWD9STAo60IExHaq6XIRlyDFgM-0-b9ca525ae8505939925f82a303fe04c6)
将式(2-102)和式(2-98)代入式(2-73),则式(2-68)成立。
将式(2-68)代入式(2-99)并化简整理得式(2-70)成立。证毕。
Kalman滤波递推算法框图如图2-1所示。
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_59_1.jpg?sign=1738924444-3dNKQn1XsGm7OWIjKFvgRccny7M8CuTo-0-db90c79ecba2defac21a2d50aa636f4b)
图2-1 KaIman滤波递推算法框图
2.1.5 ARMA新息模型
由式(2-59)和式(2-60)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_59_2.jpg?sign=1738924444-dqwQYEk2xFDxfFyAfhQZyNhNp3OHUYbL-0-cc9ac284cc03f352d44bf0f46e954a18)
其中In为n×n单位阵,q-1为单位滞后算子,q-1x(k)=x(k-1)。引入左素分解
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_60_1.jpg?sign=1738924444-nYaTwlldjWwEw9eBqC9WH55OZI7IP9bg-0-f66341d28640432c7d903d8e5a40a40d)
其中多项式矩阵A(q-1)和B(q-1)有形式
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_60_2.jpg?sign=1738924444-LcMZ7qxWT75UXwJTvRNWtWapmgAXrrpW-0-d3d6cd5ce7feba020ab759c19fe2b228)
将式(2-104)代入式(2-103)引出自回归滑动平均(Autoregressive Moving Aerage,ARMA)新息模型
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_60_3.jpg?sign=1738924444-zUPLBp31o5EHXu6yXRcfpakhyYy2VwHy-0-6b972fab81dbd3e6780fdd72c5a895b6)
其中D(q-1)是稳定的,新息ε(k)∈Rm是零均值、方差阵为Qε的白噪声,D(q-1)和Qε可用G-W(Gevers-Wouters)算法[14]求得。
2.1.6 基于ARMA新息模型的稳态Kalman滤波器
定理2.7[14] 系统式(2-59)和式(2-60)在假设1和假设2下,基于现代时间序列的稳态Kalman滤波算法如下:
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_60_4.jpg?sign=1738924444-8KQXmvOUMqdTFofAF9mBVogXdUTE2wPv-0-365ee61d25d7173f645e6ea393d820ff)
其中Mi可递推计算为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_61_1.jpg?sign=1738924444-BKRSSw5pXAaRmp08oCToQNn3rHCErPIm-0-d66d6d81e3d549daf212af38fa4175ca)
其中规定M0 =I m,Mt=0(t<0),Dt=0(t>nd)。
证明:见文献[14]。