![胡寿松《自动控制原理》(第6版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/456/27050456/b_27050456.jpg)
第3章 线性系统的时域分析法
3.1 复习笔记
一、系统时间响应的性能指标
1.典型输入信号
控制系统中常用的一些基本输入信号如表3-1-1所示。
表3-1-1 控制系统典型输入信号
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image552.png?sign=1738879635-HXSMFc2GLtS0xQPeSmSV46gKafIySQyG-0-6e9cdb730b24c218a4f749f1c310cdb4)
2.动态性能与稳态性能
(1)动态性能指标
——延迟时间,
到稳态值一半的时间;
——上升时间,
从终值10%上升到终值90%所用的时间,有时也取t=0到第一次穿越的时间(对有振荡的系统);
——峰值时间;
——调节时间,进入误差带且不超出误差带的最短时间;
——超调量,
。
(2)稳态性能
稳态误差是系统控制精度或抗扰动能力的一种度量,是指t→∞时,输出量与期望输出的偏差。
二、一阶系统的时域分析
1.一阶系统的数学模型
一阶系统的传递函数为:
2.一阶系统的时间响应
一阶系统对典型输入信号的时间响应如下表所示。
表3-1-2 一阶系统对典型输入信号的时间响应
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image562.png?sign=1738879635-CnY8B2mH4CsgyUzzqSH2ZSvFbUnFNgLh-0-1d5ccc74f86bef029423af275786da13)
三、二阶系统的时域分析
1.二阶系统的数学模型
二阶系统的传递函数为:
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image563.png?sign=1738879635-kixi1PVJqPagFkf2d8FD7QWHl0KsIxLl-0-a3eff06804609a0da157ea38a597e05b)
其中,,称为自然频率;
,称为阻尼比。
2.欠阻尼二阶系统
(1)当时,为欠阻尼二阶系统,此时有一对共轭复根
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image567.png?sign=1738879635-NAq356aGnlkxY5NtpurZLdpm7EYvtOUi-0-b18cf614ccef19f2031309166d3357df)
(2)单位阶跃响应
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image568.png?sign=1738879635-blkovY4aNSux5rsur4XWvJ8Pmly4yqeX-0-f8e1ef5d8d4895e77aee63aabfaeba2c)
式中,,或者
。
各性能指标
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image571.png?sign=1738879635-qcq5M9xnqodc80gQ2iWVRYguxWrX6Rvt-0-1f8032224bd6a0680ffa1326c116dbbf)
3.临界阻尼二阶系统
(1)当时,为临界阻尼二阶系统,此时
。
(2)单位阶跃响应
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image574.png?sign=1738879635-HOU48oKhkOJQES0LwTEDzghnXNQajjg6-0-e8cf3ecea73667629df1d7e960316bf2)
4.过阻尼二阶系统
(1)当时,为过阻尼二阶系统。
(2)单位阶跃响应
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image576.png?sign=1738879635-MBpZXuFn2KWLXLDtROGHjj52zycuVtbE-0-9249f6da2514ab622898faa32d6afdb6)
四、高阶系统的时域分析
闭环主导极点:距虚轴最近的极点,其他极点距虚轴远远大于该(对)极点,周围又无零点的极点称闭环主导极点。
五、线性系统的稳定性分析
1.线性系统稳定的充要条件
闭环系统特征方程的所有根均具有负实部;或者说,闭环系统传递函数的所有极点均位于s左半平面。
2.劳斯——赫尔维茨稳定判据
(1)赫尔维茨判据
设系统特征方程为:
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image577.png?sign=1738879635-0KsbeKnNoac8psnm1r6OQG0LbIMKsJDJ-0-e06f71e4e2200f1269280e26a5468274)
则系统稳定的充要条件是:
①的各项系数均为正;
②其赫尔维茨行列式的顺序主子式均大于零。
(2)劳斯判据
系统稳定的充要条件是劳斯表中的第一列为正。劳斯表中第一列正负号改变的次数是特征方程正实部根的数目。
注意劳斯判据的特殊情况:
①某行第一列项为零,而其余各项不为零,或不全为零。此时可以用()乘以原特征方程,其中
为任意正数,再对新的特征方程应用劳斯判据。
②劳斯表中出现全零行。这种情况表明特征方程中存在绝对值相同但符号相异的特征根,此时可用全零行上面一行的系数构造一个辅助方程,并将辅助方程对s求导,用所得导数方程的系数取代全零行的元,便可继续计算。
六、线性系统的稳态误差计算
1.误差与稳态误差
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image582.jpg?sign=1738879635-izwicqTHYP0fkpUi3FLohSjeit90bFsi-0-7badef993fec9325686c84a51699490f)
图3-1-1 控制系统
(1)误差:如图3-1-1所示的控制系统中,称为误差信号,简称误差。
(2)稳态误差:误差信号的稳态分量
称为稳态误差。
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image586.png?sign=1738879635-ERAT8mHIV4wfWLFVVSuAgArd06hRtOLg-0-e96c202e2bcce1ec790c125418f90a92)
2.系统的稳态误差计算
(1)系统的型次
设系统的开环传递函数为:
其中,k 为开环增益,为时间常数,
是纯积分环节的次数,称系统的型次。
(2)典型输入信号下各型次系统的稳态误差计算
在阶跃信号、斜坡信号、加速度信号三种典型输入信号下,各型次系统的稳态误差如表3-1-3所示。
表3-1-3 典型输入信号作用下的稳态误差
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image590.png?sign=1738879635-5mqTz35ddCZu0x35KurqzcSqgcaAVsH5-0-5cedcf7e8b149194013420956d2682ac)
3.动态误差系数
由误差表达式可得
,称为动态误差系数。它们与静态误差系数的关系为:
0型系统:;
Ⅰ型系统:;
Ⅱ型系统:。
4.扰动作用下的稳态误差
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image596.jpg?sign=1738879635-ijNYexNlBIkSoOySYJiIY8bNPrNGhwGU-0-241716734a9b4af43b9bd3ce8601c42d)
图3-1-2 存在扰动的控制系统
如图3-1-2所示,对于存在扰动的控制系统,可以用以下两种方法分析其稳态误差。
(1)动态误差系数法,将误差的拉氏变换为Taylor级数来分析;
(2)当在s右半平面及虚轴上解析时,可以用终值定理来计算稳态误差。
5.减小或消除稳态误差的措施
(1)增大系统开环增益或扰动作用点之前系统的前向通道增益;
(2)在系统的前向通道或主反馈通道设置串联积分环节;
(3)采用串联控制内回路扰动;
(4)采用复合控制。