![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
§2 曲线的曲率与挠率,弗雷奈公式
曲率描述曲线弯曲的程度.挠率描述曲线偏离平面的程度——挠曲的程度。这两个量对于描述曲线的形状来说,具有决定性的意义。
2.a几个引理
为了以下讨论方便,我们先介绍几个涉及向量值函数导数的引理.
引理1 对于可导的向量值函数r1(t)和r2(t),我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0066.jpg?sign=1739300595-8aHYzdORGgBhNtxoxQ7z2rUxHj50b3rY-0-a32c19fe9ada04f95fd33cb5d7678cec)
证明 用坐标分量表示(r1(t),r2(t)),然后再利用数值函数的求导法则.请读者自己补充证明的细节.□
引理2 向量值函数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0067.jpg?sign=1739300595-BkhZTqM6870rr2n9Ph5S1mLRJEdlNOfs-0-d2a17648ce4a51c14dc63b2fe35edfe6)
保持定长的充分必要条件是:r'与互相垂直,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0068.jpg?sign=1739300595-j8j4Il6hfcsaaiImG8UV9Nt3gNy05byK-0-ef266306a8774c366f8502e3810a1643)
证明 我们约定记r2(t)=(r(t),r(t)。显然有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0069.jpg?sign=1739300595-3wfi86dHu0LxffGCOiqemQK7YaA4KQkD-0-c8496cdad659969d4149eb1a1f45586c)
根据引理1,又有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0070.jpg?sign=1739300595-WLEoHML8tR9UXM1oUHNX0Wzfvp34wcUV-0-56b9a515e44e05ec4110e64432abf5b0)
由此就可得出所要证明的结论.□
引理3 设是单位长向量:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0071.jpg?sign=1739300595-jcSD26FjvSFGIWdW4b7AV2WK7QT3vSRK-0-fa50b1ab72d122f9374a2b8ed2ec6f6a)
则r'(t)在与r(t)正交的方向上,它的模||r'(s)||表示向量r(t)转动的角度相对于参数t的变化率.
证明 我们用表示从向量r(t)到向量r(t+△t)的转角(图14-1),则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0072.jpg?sign=1739300595-MyJ6NUUqBLRGFdrSyoQc8RQ9Nnsyt333-0-3832815c7804559bc1ac8fb79a287329)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0073.jpg?sign=1739300595-yGUuG4pRrzGYCRpEJbsgnSPZY5EbuRnm-0-9a01ca52ff7f57e1361e6affc8dd7d0d)
图14-1
于是有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0074.jpg?sign=1739300595-8Gvk9eR4i80cfWID9iQpfWbqJKpp5LNd-0-2aab60dc9a743e2949488e2a6529674d)
2.b自然参数,曲率
考查曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0075.jpg?sign=1739300595-lq2Fv3eK5jn5w22wnQsABXo6IlKED2wG-0-3aadfc9b10f7fd01b0ae35d5611c1999)
这里假设连续可微足够多次,并且满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0076.jpg?sign=1739300595-F5MHWwh02dvkQSPL3ZCcuDD44MNuFoM7-0-816d4f7aae0d2984ef282aad96ebb7bb)
曲线(2.1)的弧长可按下式计算
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0077.jpg?sign=1739300595-IovgpidKlslHxbF6HVBPRw9Li34n69iI-0-91a833eef8d0197bd42c304361c2aef0)
这里的t0是量测起始点的参数值.因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0078.jpg?sign=1739300595-jQeFel4B1vfLZOxSa7AfqARVOntwHUDE-0-a14252b5aa54cc4c70524ebca73d6824)
根据反函数定理,可以断定t是s的连续可微足够多次的函数:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0079.jpg?sign=1739300595-0AvAygDsmdyJfweFK1n4wUt1IZWadxs2-0-bcd263023bc2aef93eaae8e09b2a09b9)
于是,可以用弧长作为曲线的参数,把(2.1)式改写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0080.jpg?sign=1739300595-0KibjCUYc7YYahLr8qgxI7M3S4d0ftRa-0-e6c4d55c3922824bdb645b6328876dd2)
以下,我们把弧长参数s叫做自然参数.为避免记号繁琐,对于不致于混淆的情形,就简单地把(2.3)式写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0081.jpg?sign=1739300595-iY8edhKv0Qxfd6tSVZyK7IDkN4TSBTz3-0-1f564d477a92acb313f281ae223a4a75)
在本章中,我们约定用圆黑点“·”表示对弧长参数求导.于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0082.jpg?sign=1739300595-R5qDUBe2VM5MCzNWYnlsrERkvZDF4WvA-0-782a8b25f9c8388be61de3884ce260c9)
由此得知,r是一个单位长向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0083.jpg?sign=1739300595-8We8yFGSETNX4LiqNeOcsO3xFlXtjxWB-0-0dc400a8faa60dc950e237d021f6681b)
于是,r(s)是曲线(2.4)在r(s)处的单位长切向量.我们约定用记号
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0084.jpg?sign=1739300595-Ggug3IbTZPkddYmlnLMeTCubTwPNHFFp-0-0a7d0e5426ad65c4d2b3b710c3a1f850)
表示这单位长切向量。
请注意,为了讨论方便,我们约定把切向量看成自由向量,因而可以把各切向量的起点都移到坐标原点.读者以后逐渐能体会到这种看法的好处.
将T(S)=再对s求导,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0086.jpg?sign=1739300595-6TEBC0uaqTT8MCBXH2pMfhyZT5MKS43W-0-97c38d6cf2393acf63e0d0581347c10b)
既然T(s)=是单位长切向量,那么向量
就在与T(S)正交的方向上,并且
表示切向量T(S)对弧长S的转动速率
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0090.jpg?sign=1739300595-Q37pG3fMrVXaIQxtfikb4AxlpCH9FjTO-0-d48ec9e49474aab381a659c0d7188a21)
——请参看图14-2.
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0091.jpg?sign=1739300595-hYWElddHPNdm7PD2P2GQ90ekfI7ymfLM-0-4090289bc015c5ac79cff8ed7d7b5e6c)
图14-2
我们把切向量T(s)相对于弧长s的转动速率叫做曲线(2.4)在给定点的曲率,并把它记为k(s)于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0093.jpg?sign=1739300595-1JHE60MEpMCnpVwyJWbOphGcxLBsGHdC-0-477a3e018b09811b45477c8363158852)
曲率K(s)的倒数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0094.jpg?sign=1739300595-GDuFvKI0Znqo0dugxxnyyyel32YoUnPl-0-1027b9c0cd70acf4029488eaff4966de)
被称为曲率半径。与κ(S)一样,曲率半径ρ(S)也表示曲线弯曲的程度。只不过ρ(S)越小表示曲线弯曲得越厉害。对于κ(s)=0的情形,我们约定ρ(S)=+∞。
例1 考查圆周的方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0095.jpg?sign=1739300595-H0OTkSJ7IH0DXO7Lu8MvEhxRUpKOG2NB-0-2f19dc26f50b5a1944ffb39b49569713)
换成弧长参数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0096.jpg?sign=1739300595-9jYqDtQRwHudkkZYL8udyrUFhrSIujW2-0-784f2b9fdebaa2f83b88a0d2649b82a6)
圆周的方程写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0097.jpg?sign=1739300595-PzBq3M0b8nvrtujWvHLErSy2VaGBTRva-0-72a40ad4a67ece1b16029ff875a9deca)
利用以弧长为参数的方程,容易求得曲率k和曲率半径p:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0098.jpg?sign=1739300595-ST0iUlr3t0OZDhUw9y0I5fFkCzQ8ev5z-0-ba36007cf26a254650349fa3df399207)
例2 某段曲线为直线段的充分必要条件是:在这段曲线上曲率处处为0,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0099.jpg?sign=1739300595-2aZbKgCFlMjmIWLBlp4mDAWYrf2GQTbE-0-dacf3c325972980ffe6362e4b40eb2ce)
证明 如果某段曲线为直线段,那么这段曲线以弧长为参数的方程可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0100.jpg?sign=1739300595-DSHymHRX0gtbvLXDjiUz1AKr2brBGuh8-0-16fd13a9a77fc8f16a7b98eea2ab2c42)
这里e是长度为1的常向量.将上面的方程微分两次就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0101.jpg?sign=1739300595-GjZ4gYbImLjHssOAobpfAcsgVOYnYd93-0-1a4e73ea7f14b3737f900ba26a0ce36d)
因而
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0102.jpg?sign=1739300595-nWk4WqgE3o0zzhRH4JVcAYEcPHZVDAzN-0-ce6dd1899fa4b298b0c8b3c9b08ff21d)
这证明了条件的必要性.
再来证明条件的充分性.假设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0103.jpg?sign=1739300595-U4MQi17LuxIm4RemFm5HSAfjJ0VkjHTm-0-c44959b03749d98743d02d048daa301f)
则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0104.jpg?sign=1739300595-Wcf97jo0TPUnWLkzFm3rfiBhhq0mGVQP-0-be6f0aa4250967c11566d47500220265)
于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0105.jpg?sign=1739300595-rXqqQgJIbmrOOQwXfmcqdXKjRa80jQ4e-0-846ccbc3415c50620e4af8616930382e)
由此又得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0106.jpg?sign=1739300595-1H5C6OyveSXK0USKgomwJTdglJLPzbza-0-c763f086ed41452c5c0412dd67ee945f)
这证明了条件的充分性.□
2.C弗雷奈标架,挠率
曲线上曲率等于0的点被称为平直点.我们来考查不含平直点的一段曲线.在这段曲线上
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0107.jpg?sign=1739300595-KAfwLBmAPcVIpWs7iSNGqwkLzltHl25I-0-6beebe46c5e4ce91efbd266f8819c28a)
所以可以定义
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0108.jpg?sign=1739300595-Ww7YmhUBh9OXfDn2HxLtkyluo3WQz5SG-0-df5471d1f7b1a66de0a33a757ad0b19c)
这是正交于T(s)的一个单位长向量,我们把它叫做曲线在给定点的主法线向量.利用切向量T(s)和主法线向量N(S),又可作出第三个向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0109.jpg?sign=1739300595-4QB8TNeHNeKy73sKUKpFcF25kUMNHxgG-0-9838d08e6d56d5dd7b7457974d0a0c15)
因为T(s)与N(s)是互相正交的单位向量,所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0110.jpg?sign=1739300595-26XclA8FTaO0OD2OOJJALxuNveGpWDak-0-5618f5e5035e7edb012b70c6cbbf0cc9)
由此可知:B(s)是与T(s)和N(S)都正交的单位向量.我们把B(s)叫做曲线在给定点的副法线向量.在曲线上的给定点,由切向量T(s)与主法线向量N(s)决定的平面,叫做曲线在这点的密切平面;由切向量T(s)与副法线向量B(s)决定的平面,叫做曲线在这点的从切平面;由主法线向量N(s)与副法线向量决定的平面,叫做曲线在这点的法平面.
这样,在曲线的每一个非平直点,我们建立了一个规范正交标架{T(s),N(s),B(s)}这标架被称为弗雷奈(Frenet)标架.由这标架决定的三面形被称为基本三面形.
当点沿着曲线运动时,弗雷奈标架也随着运动(像这样的标架被称为活动标架).我们需要考查弗雷奈标架运动的状况.先证明一个引理.
引理4 设e1(t),e2(t),e3(t)是向量值函数,对每一参数值t它们都组成一个规范正交标架{e1(t),e2(t),e3(t)}.如果将
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0111.jpg?sign=1739300595-YOk9tiRltnjjhHPLNbikCu9zTmkjVFMH-0-05c382ad84f4c27a4c57a036992455f3)
按这标架展开
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0112.jpg?sign=1739300595-TyMLvlND6qyKhKv1MGP9jjrxkgM31mEH-0-2eca43367035b8535374094b632cf9bc)
那么展开的系数应是反对称的,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0113.jpg?sign=1739300595-tI0wjishVGQmpTRgkck2BxbdEpMARyi2-0-b2f7b3fe92f2099e450a10bda1dd18de)
由此可知
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0114.jpg?sign=1739300595-VaSyYZ92WfS8AZJp3J0SargEWJmy0rVt-0-3f2fd980083e97c499d78ba4b1a3f274)
证明 我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0115.jpg?sign=1739300595-btwFNQDmZRhUVDTr9mgIdNsFEOJOhpFB-0-d8bbf9526e37303a6496ebe03ec345fd)
将这式对t求导得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0116.jpg?sign=1739300595-71hB0D17bumpN70RKl6IwS0s0qcxD7vP-0-9a680a96834611e04235e8997f414215)
这就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0117.jpg?sign=1739300595-8iA2kQpgjirAmobWCOnohNlyyPApA3rQ-0-c4a97bed4f2b9fcca8dad6f30ddc6e7f)
定理 对于曲线的弗雷奈标架
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0118.jpg?sign=1739300595-T8VFPuOpvIot48GLM5Iu5REWgaq1GaQH-0-2c4beb6b2ef1c77da3fcdca7c9a7a814)
我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0119.jpg?sign=1739300595-vfaFjuGAPxJOqBefzuxGm3v6QJq7f1wG-0-c2f9163b6f3af6482b97611d475ac3d9)
这里k=k(s)是曲线在给定点的曲率.
证明 对于标架{T(s),N(s),B(s)}用上面的引理就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0120.jpg?sign=1739300595-GJlVI6VCDIm0FJeHm3M95gs9tNFfipDj-0-fcf46a8a278fed00f4d7deb3979db643)
但我们知道
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0121.jpg?sign=1739300595-krqZM5zwPOLhb5RaoYteD8pK9DzRHMTh-0-8a217f8e3f6ede685ad09687acc72f27)
所以有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0122.jpg?sign=1739300595-lsVxoDQUOv93bzvuk8oko0kmn18TE069-0-4b14c4d561134c09a58a2d5c94b47599)
我们记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0123.jpg?sign=1739300595-fYvaBzG9rfZJCLO3Nto4aiVe6IZBoUwc-0-76a0d893ac69cc3240920d31606b867d)
于是就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0124.jpg?sign=1739300595-S4kO5LHJ9foI25Wr3nCsXBCjc6OskEAh-0-2f0aeb7a037137467d78c0245fde70e0)
上面定理中所给出的公式被称为弗雷奈公式.该公式中的系数τ被称为曲线在给定点的挠率.下面,我们来说明挠率τ的几何意义.
引理5 设r(t)是一个n阶连续可微的向量值函数,则有以下的泰勒展式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0125.jpg?sign=1739300595-C0wT6eEDDsWZKLpQ7IKjiSFp7lsA3LGT-0-20f51fd5bae83ec75fde468dd595ff16)
其中的Rn+1(t)满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0126.jpg?sign=1739300595-pRXCx54PS9ll9D2dUxOHxtK2Z8E12EI2-0-e07e731f2fdc12fc2ff57071709576af)
我们还可以把r(t)的泰勒展式写成如下形式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0127.jpg?sign=1739300595-XfINh5uapMMYBQz2kKYW0var2wMI7VMy-0-304655d10bb38b978ce4712a89329706)
这里的小o余项表示满足条件(2.5)的向量值函数Rn+1(t).
证明 设r(t)=x(t)i+y(t)j+z(t)k.将r(t)的各分量按照带拉格朗日余项的泰勒公式展开就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0128.jpg?sign=1739300595-83sAISUUZZLGO07JExWqPhWeG9irOQyw-0-1c9f70abb3ae520e5424b51dfa419629)
若记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0129.jpg?sign=1739300595-S9DtcTFOjmlI050SdzzmHF2yOsDkWUkI-0-47b6aef7d4df1be9c552e12089cb3b77)
则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0130.jpg?sign=1739300595-sWCdCld4fJPh8fhGZSW0ovcAZiXDUKhn-0-d9a7976ca73d44ceb768d32937a26ab0)
利用x(n),y(n)和z(n)(t)的连续性就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0131.jpg?sign=1739300595-ekkV6KIhrN0PdipeTnwzlVDDufGiYHoB-0-09d373dfd28484e6696a488ff62dcd04)
对于用自然参数表示的曲线r=r(s),利用上面的引理可以得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0132.jpg?sign=1739300595-5UtsvPxbc1VBnLBEM5Seu5ZgOFb16azQ-0-b738d325e43f2e566b593b1e6275c3fe)
按照定义,切向量T(s0)与主法线向量N(s0)张成曲线在给定点的密切平面Ⅱ0.因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0133.jpg?sign=1739300595-8jZbEsgVtxydzfUAD0Ydzb2Ciz3Jownh-0-3446a57176072fd3a04ad5834a69c999)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0134.jpg?sign=1739300595-PSTfF9u7rLmF8MBaa0p6xEyFWuC2R1WX-0-569953dc7ea29be9f8d156d41d753bd0)
是在密切平面Ⅱ0上的点.我们看到,在给定点邻近,曲线离密切平面Ⅱ0的距离是高于二阶的无穷小量.在这个意义上,我们说:密切平面Ⅱ0是在给定点与曲线贴合得最紧密的一张平面.在曲线上任何一点,副法线向量是该点密切平面的法线,而这样,我们了解到挠率τ的几何意义:|τ|表示副法线向量B相对于弧长的转动速率,也就是密切平面相对于弧长的转动速率.因此,τ表示了曲线挠曲的程度(偏离平面曲线的程度).
例3 设某段曲线r=r(s)上没有平直点,则这段曲线为平面曲线的充分必要条件是:在这段曲线上挠率处处为0,即τ=0.
证明 先证条件的必要性.设某段曲线r=r(s)在平面Ⅱ上,则
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0136.jpg?sign=1739300595-sKPhHRS5XVxmQIxedO3HRbPo0uwrOfjn-0-e6f3b872af6a18e8142fc0e1aa6dddce)
都在这平面上,于是B=T×N是常向量(垂直于平面Ⅱ的单位向量),因而
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0137.jpg?sign=1739300595-ZhK0DV2TphuA813Hl8D6lEWsePkrqfcK-0-11b7f8d2296d5a0604369e3ffefbf8cc)
再来证明条件的充分性.设挠率则
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0138.jpg?sign=1739300595-jtwApRwkLhR91YQh4tpfQGtIW0vo6X2M-0-79a1811a4a8cde820e2d4c4efe041e6a)
因而B是一个常向量.考查函数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0139.jpg?sign=1739300595-84Bs6k6sKlYdi9s60wq3TdoPwmzxmOXZ-0-d37c80c833378c2d307fbac4fd4c8aa2)
因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0140.jpg?sign=1739300595-RbtfVydWxoMblsfCa0JU4OMvc2xcAZOe-0-2d57bcff2e22c19b1bab2dce132fc60d)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0141.jpg?sign=1739300595-rCSP1gjndvatG7Hpanx1tAbVSbtymvHE-0-6c57dc0485e5d080dab5b2400139ca89)
我们看到:曲线r=r(s)在平面
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0142.jpg?sign=1739300595-mNmNuYdK0V8ujG77NtnXEVoo8pJy78OI-0-73bbd1859d119efe7cd6a4f0d9667e27)
之上.□
推论对于平面曲线r=r(s),弗雷奈公式可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0143.jpg?sign=1739300595-ias4J12FBaWDi6ZaDUwI5swaNAGoMcZG-0-19fce6e7e491d053f02fe7fdc056d3bd)
2.d曲率与挠率的计算公式
如果曲线方程以弧长作为参数:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0144.jpg?sign=1739300595-AytWR2frUHeUqFb9vuiAnBVkjxVzLIXX-0-943b1a41f214980c1fb2b0667146dcc2)
那么曲率与挠率的计算都比较简单.将r(s)对弧长参数s求导并利用弗雷奈公式整理求导的结果,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0145.jpg?sign=1739300595-k6S5dkK5ALz0MGFNJbt2jhsRQrsdWiiw-0-c5a8e9652d01cec2b2da86e1c39431fd)
由此可得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0146.jpg?sign=1739300595-Zaafl4XTjYH3pDAhqbcCcphiJ6PRgYup-0-fec441a7e5756d174ed36bf6b0ce83da)
在这里,我们用记号(u,v,w)表示向量u,v和w的混合积:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0147.jpg?sign=1739300595-rLDmXeaFldHsxSByTBU8jtgCnbErokUr-0-2f4c398b7c23c0f20914c58cd1b75c12)
对于更一般的参数,我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0148.jpg?sign=1739300595-NhXGpypjkEDXLdfnmsZolFwENVm8mGCs-0-e6952b83c022330cfd8c79de47adeee2)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0149.jpg?sign=1739300595-PDt3SSOgLWxK4qisRQMITKaw2Xjpdj6Q-0-f6b6f70f291cedd0aef4491ae9394675)
因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0150.jpg?sign=1739300595-oFHAZP9xVLBVxJQo9Hp5NnvmtWIhBjJg-0-5b8442df80c067f8ebf3a4469edf1ca4)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0151.jpg?sign=1739300595-DfXP3TKtazXWZetJI1W1SertDOSefO1m-0-f99d66bd1735f0308d7d27efb185c9cd)
于是,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0152.jpg?sign=1739300595-gyyW138ptkfFBgRtmvcVTZCI2eyvPlBp-0-090c63c25073d1b7b771de93c46b4ce8)
由此得到一般参数曲线的曲率与挠率的计算公式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0153.jpg?sign=1739300595-jGACifMz3xWNjGUuLRIeeMMUblwMyfhw-0-369999bb6d3da67de8b908dbaaf5e0cd)
2.e关于曲线运动的讨论
最后,我们利用本节得到的结果,考查质点的曲线运动.设运动质点的轨迹是曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0154.jpg?sign=1739300595-rl0VDXFYhkSOASI5KBks5ooalTIGxRpy-0-473136a4f9df496da07ce5523302fc8d)
这里的参数t是时间.将r(t)对时间参数t求导,就可求得运动的速度与加速度.运动的速度为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0155.jpg?sign=1739300595-qM1zeDlo1dJKW7Ed2GbKKCSFl7q8DY2N-0-df10fdc432c0c14eb3153c544e849c9e)
这里
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0156.jpg?sign=1739300595-EejyhI430hp3lHnpAAXCsV618VZx8gMO-0-0a842ee6f96d4471bf603962c7c9acec)
是速度的数值——路程对时间的导数.运动的加速度为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0024_0157.jpg?sign=1739300595-iS9QAIbCMKRIcD6EGGStzdbc803swFVk-0-1cec70227d5065eb3fff95bfc6f6e190)
这里k是运动轨迹的曲率ρ是曲率半径.
我们看到,运动的速度沿着轨迹曲线的切线方向,其数值等于ds/dt;运动的加速度分解为两个分量一切向加速度与法向加速度.切向加速度沿运动轨迹的切线方向,其数值为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0024_0158.jpg?sign=1739300595-uSKXGxlOoeXRv4EDB1EQRP8tGW6nk3ds-0-e5ca478bfb59ea90318403439138a916)
法向加速度沿运动轨迹的主法线方向,其数值与速度的平方成正比,与曲率半径成反比:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0024_0159.jpg?sign=1739300595-tdf5xaPW5yCqxXgv3LaiFQI3Z2IRP8qV-0-dbb44e1d92d1aa3f99f15d3a2fd30eeb)