![经济数学—概率论与数理统计学习辅导(高等学校经济管理数学基础辅导系列)](https://wfqqreader-1252317822.image.myqcloud.com/cover/400/23912400/b_23912400.jpg)
二、典型例题
(一)利用古典概型的概率计算方法及运算法则求事件{X=k}的概率(即X的分布列),并进一步求X的分布函数
例1 一台设备由三大部件构成,在设备运转中各部件要调整的概率分别为0.1,0.2,0.3,假设各部件的状态相互独立,以X表示同时需要调整的部件数,试求:
(1)X的分布列;
(2)X的分布函数F(x);
(3)P{X=2.5}, P{X≤1}, P{1<X<3}.
解 设事件Ai={部件i需要调整}(i=1,2,3),由题设知P{Ai}=0.1, P{A2}=0.2, P{A3}=0.3, X的可能取值为0,1,2,3,注意到A1, A2, A3相互独立.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0056_0001.jpg?sign=1738880080-EsiEJjTbFgm9W0o9Fpv2dGD7PhuMULVo-0-42af756479e61370fd13593c89f01c89)
于是X的分布律如下表所示:
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0056_0002.jpg?sign=1738880080-N3NE6iNm051f07VYfuhg2144ETYkmFsY-0-54ff5f8f6f2e7b0096aef00b8a23e63b)
(2)X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0056_0003.jpg?sign=1738880080-l2D16dv3h1E4BtsdR1o929BCgcRIoduN-0-c456613acf66f25d9eb1f6d37432e7b9)
(3)P{X=2.5}=0,
P{X≤1}=P{X=0}+P{X=1}=0.504+0.398=0.902,
P{1<X<3}=P{X=2}=0.092.
(二)应用分布的充要条件求分布中的未知参数或确定分布
例2 求下列分布中的未知参数a:
(1)已知随机变量X的分布律为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0056_0004.jpg?sign=1738880080-6605LbWJ36DCo4RBL3oqaweZclmhQVbq-0-ebfb63e32f0ef35edc43d71592b0c595)
(2)已知随机变量X的概率密度为(x∈R, λ>0, μ为常数).
解 (1)由题设知0<a<1,且(1-a2-2a)+(1-5a2)+a=1,由此解得.
(2)由题设知,而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0004.jpg?sign=1738880080-jIADVH1yIUABIBSDKHYwpWMRJJMEumbF-0-fdbe9491d95c90a7dd5e5b0ab573f025)
故
例3 设连续型随机变量X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0006.jpg?sign=1738880080-qtwuzoqq8NIBxjmToDwSY31W64QnztpU-0-39686e7afb551cce0f433d475bf04ee2)
试求:(1)A, B的值;
(2)P{-1≤X≤1};
(3)X的概率密度f(x).
解 (1)由分布函数的性质F(+∞)=1,可知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0007.jpg?sign=1738880080-i76UbG6yu9G5q8XfVstast8e2BaNSYcC-0-46dc9d32194c20a670f8a8adac55b3b9)
又由于X是连续型随机变量,因此F(x)连续,即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0008.jpg?sign=1738880080-KopPM4QYi4nXR2n7gHHS4t5l97TRXRx6-0-0c799069bb506c6b4345dec2836923ca)
所以有A+B=0,从而B=-1,于是
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0009.jpg?sign=1738880080-kz1cNQBHmL4vZ2qpk8uTICYAfl02kssj-0-0421e4a2d36ad6c8d37f53c17ea29534)
(2)P{-1≤X≤1}=P{-1<X≤1}=F(1)-F(-1)=1-e-2.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0010.jpg?sign=1738880080-bZNs66BjTo58aAUf72PudUPL8kdDfRPV-0-e893482b44bcf7076c52f16e72b51634)
(三)分布函数、分布律、概率密度函数之间的关系与转换
例4 (1)已知离散型随机变量X的概率分布为P{X=1}=0.2, P{X=2}=0.3, P{X=3}=0.5,求X的分布函数.
(2)已知随机变量X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0011.jpg?sign=1738880080-fCgDA63ZU4fC6aYkRTos0UfLfHAnHJWv-0-bb17c7943f5d72d0c92b1ea1a458180f)
对X的每一个可能取值xi,有P{X=xi}>0,求X的概率分布.
解(1)应用公式即可求得分布函数
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0058_0001.jpg?sign=1738880080-G3g3f9xn8No3qEPpVaquKfS0IjenWb2O-0-47dd54eed95d31cdddc387f11d4d8e83)
(2)应用公式P{X=a}=F(a)-F(a-0)即可求得X的分布律
P{X=-1}=0.4-0=0.4,
P{X=1}=0.8-0.4=0.4,
P{X=3}=1-0.8=0.2.
例5 已知连续型随机变量X的概率密度函数为, x∈(-∞, +∞),求X的分布函数F(x)及
解
于是当x≤0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0058_0005.jpg?sign=1738880080-YMZbIK98Dh1cGaLHtD6bV8UhExWDywet-0-3aa58417c004e91735d952db3f71e021)
当x>0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0058_0006.jpg?sign=1738880080-apH19s6mCwNbhXZwrzD4bbCX798AgKhG-0-5ff6b5a4278540ea6f4ef20de253cbfd)
综上可得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0058_0007.jpg?sign=1738880080-MOHM9KPAoaSrJgnYRc9B8YAeOShf8yIa-0-b703d2d09ba14ff9500c070046ebf934)
继而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0058_0008.jpg?sign=1738880080-hpw7J6sABIsD0PcNYlxnTGx8GAcphWjS-0-2a574543cc550446690651b6d4632745)
例6 设随机变量X的概率密度函数关于x=μ对称,证明其分布函数满足
F(μ+x)+F(μ-x)=1, -∞ <x<+∞.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0058_0009.jpg?sign=1738880080-LpNdIL9Z7FHx2lduT00LoXNXop1syoZg-0-567f835a36ded6c5b40c03e21b0d9c05)
又由概率密度函数的对称性知
f(μ-u)=f(μ+u), u∈(-∞, +∞).
故有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0001.jpg?sign=1738880080-CJVfEaUrujqT69XLdKNTYomTSRDETsFa-0-6576748fad1781035523c386ef1cf442)
例7 (1993年数四)设随机变量X的概率密度为f(x),且f(x)=f(-x), F(x)是X的分布函数,则对任意实数a,有( ).
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0002.jpg?sign=1738880080-eyNNyU7RWCsFEtpY8tnS8i6aqxbOrhXd-0-8c22e449838ddb8d8ec90ad921ae595f)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0003.jpg?sign=1738880080-0yxgHl4ZWeOkxq1QoYA7SAFK1WePa0s4-0-905253d9cc7bd951160937674c86b152)
C.F(-a)=F(a);
D.F(-a)=2F(a)-1.
解 由题设知f(x)为偶函数,故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0004.jpg?sign=1738880080-aFizztvqw8ox7MvL7IPYdVyt1i4p90GW-0-288b46bf2f826ea639aaa32ef1f674fe)
而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0005.jpg?sign=1738880080-S1Wd3MbuRX7iuxl0bSy3kEbAh4AYErH0-0-b69dec1aae29388d948eb7f98d57cbeb)
故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0006.jpg?sign=1738880080-Audp8ES7wRdi3YT8bK6IN352AtHXxee4-0-19ef54bf6e493adea637087f4a441c69)
因而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0007.jpg?sign=1738880080-FrspfT8rA1ioDY3Eyy85GkKksimADtfi-0-2f23cbe572f096a9c265520377520dba)
应选B.
(四)几种重要分布的应用
例8 假设一大型设备在任意长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布,求:
(1)相继两次故障之间时间间隔T的概率分布;
(2)在设备已经无故障工作8小时的情况下,再无故障运行8小时的概率Q.
解 (1)由于T是非负随机变量,可知当t<0时,有
F(t)=P{T≤t}=0.
当t≥0时,事件{T>t}与{N(t)=0}等价,所以当t≥0时,有
F(t)=P{T≤t}=1-P{T>t}=1-P{N(t)=0}=1-e-λt,
从而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0008.jpg?sign=1738880080-UPPpOxBD65Wj6Hr0QcleCQiv3IP4LXzj-0-196f65a064df4cad018c9cb52aec567f)
即T服从参数为λ的指数分布.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0001.jpg?sign=1738880080-ToxAJGCfY4cYGWFJuMj02A2dhebtH3nm-0-22b81af98d9b878a1705cfc0da06d825)
例9 假设测量的随机误差X服从正态分布N(0,102),试求在100次独立重复测量中,至少有3次测量误差的绝对值大于19.6的概率α,并利用泊松分布近似求出α的近似值(要求小数点后取两位有效数字).
解 设p为每次测量误差绝对值大于19.6的概率,即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0002.jpg?sign=1738880080-kqZ4BfcyvprnGpvSHSPkAwc60MqdY7HX-0-487536b54aade2a76818b6f4ecfa72fe)
设Y是100次独立重复中事件“测量误差绝对值大于19.6”发生的次数,则Y~B(100,0.05),从而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0003.jpg?sign=1738880080-JxXCpG0pMHZsJk0BRPWmPKkaIYRexps0-0-aab0bbc0c9aedc97faf64218b17e4391)
由泊松定理,Y近似服从参数为λ=np=100 × 0.05=5的泊松分布,故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0004.jpg?sign=1738880080-dgt9iTFO2hd0Eu16sQxPoaEADrafdRiU-0-6b92d35477ea2bd04ceec23a6f90254f)
例10 现有两把精度不同的尺子,第一把尺子测量的误差服从正态分布N(0,4),第二把尺子测量误差服从正态分布N(0,9).现随机选取一把尺子进行测量,求测量误差的概率密度函数.
解 记X为尺子的标号,则,记Y为测量的误差,求FY(y)=P{Y≤y}.
由全概率公式,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0006.jpg?sign=1738880080-XSrZBt2WPUpt3Ld0ex3YrMZrtNSsCEtk-0-3e909b99403218c188b27f091836875a)
从而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0007.jpg?sign=1738880080-D5fFNXwVIxCQAQZyNUPItjjYaYRpLBOF-0-4a73e8a03edfa8521ba9e7c2dfe4aad3)
例11 设顾客在某银行的窗口等待服务的时间X(单位:min)服从指数分布,其概率密度为, .
顾客在窗口等待服务,若超过10min,他就离开,他一个月要到银行5次,以Y表示一个月内他未等到服务而离开窗口的次数,写出Y的分布律,并求P{Y≥1}.
解 该顾客在窗口未等到服务而离开的概率为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0009.jpg?sign=1738880080-zoX90TGsw73wyDASPyg3DEtNUqYfcsxf-0-542040a725e912bd2d5d24fd8c4a673e)
显然Y~B(5, e-2),故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0010.jpg?sign=1738880080-vcnMwAbVDsb77gIx1zmWvKSKbXtsGRJ5-0-168ceb1fd23f105d0f4f063c57ddd578)
P{Y≥1}=1-P{Y=0}=1-(1-e-2)5=0.5167.
例12 在电源电压不超过200V,200~240V,超过240V三种情况下,某种电子元件损坏的概率分别为0.1,0.001,0.2.假设电源电压服从正态分布N(220,252),试求:
(1)该电子元件损坏的概率α;
(2)该电子元件损坏时,电源电压在200~240V的概率β.
解 令A1={电压不超过200V}, A2={电压在200~240V}, A3={电压超过240V}, B={电子元件损坏},则
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0001.jpg?sign=1738880080-fB3Hf18zBdpjHInkwSeD8qphATG0GAip-0-d5ff28e3dc1cc7c6a29217bb4965924b)
由题设知P(B|A1)=0.1, P(B|A2)=0.001, P(B|A3)=0.2.
(1)由全概率公式有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0002.jpg?sign=1738880080-7hOmPV8LmK6Gn3EQEZ7G7L6lZGjGlN7m-0-31f58d08e7c1cd2f8e1ead4026c2739f)
(2)由贝叶斯公式有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0003.jpg?sign=1738880080-5qOZyjqiddlTLGLfJapS0lmAYoqaVh1f-0-070bc69bbe19029c768f720194b76dc6)
(五)由随机变量X的分布求其函数的分布
例13 设X在区间(-2,1)服从均匀分布,求Y=X2的概率密度.
解 X的概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0004.jpg?sign=1738880080-upiX2dIqbJMhiaZ3ucXgDoBFvfjy6NFr-0-1c6e7e41ec01efccbb139fc2b106efab)
先来求Y的分布函数FY(y).因0<Y=X2<4,故当y≤0时,FY(y)=0,当y≥4时,FY(y)=1.当0<y<4时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0005.jpg?sign=1738880080-9jXrcX8Wd0E32LeLfbQi7AObLp5xTxxJ-0-ae289bdaac8659e3909f862d0bbf9a2b)
将FY(y)关于y求导数得到Y的概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0006.jpg?sign=1738880080-FTRrcQj2XBoBsphc5khAiPFLOejpLEfd-0-ea023f81fe018538bf84732bab2d5f03)
当0<y<1时 ,于是
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0008.jpg?sign=1738880080-8W06XdJzUxLTQUqd2feOPyOq6SAamTws-0-5bb035c08311d39c54c9a59811e9d8df)
当1<y<4时 ,于是
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0010.jpg?sign=1738880080-uRuD5Rnq77dv4Qt1H2Vv8wk08UTCv7L1-0-4999e157ea414588c092cec2ca22132d)
因此
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0001.jpg?sign=1738880080-d0E30QzBkvWjAuKIbzYXPx1nxQD0EtEF-0-e496597ed3b2647192088a7776d7566f)
即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0002.jpg?sign=1738880080-ocPiKmWNzHS0M6GabMoM1X6vaijtOyCJ-0-5f1c4a5857a667e6e71f87b8c9752450)
例14 假设随机变量X服从参数为2的指数分布,证明:Y=1-e-2X在区间(0,1)服从均匀分布.
解 由题意知,X的概率密度函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0003.jpg?sign=1738880080-YynT30cy5HWss1nvGQNylenJUi0SSCtr-0-66ff00eda6f8aa6fd3979761572f9c15)
函数y=1-e-2x是单调增函数,其反函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0004.jpg?sign=1738880080-tPbHgBmfdoUAi18Qn1986nebPVn1Tdsn-0-75a89de9b92ca78476c7fc2e48a23f4d)
当x>0时,0<y<1.所以由公式法可得Y=1-e-2X的概率密度函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0005.jpg?sign=1738880080-o4uwbzc3SBkJ1ug80azlHAM5pdjWuCKc-0-86cfaebd2aa1331636b1a01c7c81fc50)
于是,Y在区间(0,1)上服从均匀分布.
例15 随机变量X的概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0006.jpg?sign=1738880080-j7VIzxVjWOj7nCEVBL40ShzCySDiJXaD-0-5087d6fbebb9e12bb80fb18979daeae0)
F(x)是X的分布函数,求随机变量Y=F(X)的分布函数.
解 当x<1时,F(x)=0,当x>8时,F(x)=1.当x∈[1,8]时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0007.jpg?sign=1738880080-bujWpPbuGAEIWi5akkhKCVyUqtbu68U8-0-88dacea4b4eb23b8a886dac3ac959cf2)
设G(y)是随机变量Y=F(X)的分布函数,显然当y≤0时,G(y)=0,当y≥1时,G(y)=1.当0<y<1时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0063_0001.jpg?sign=1738880080-xtbDUyTElBbLrD7SXVhRdqIFIVeW5C2c-0-fc28a06e99341fbf1b7dde8b10102a19)
故Y=F(X)的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0063_0002.jpg?sign=1738880080-JOMQsP12hj6yRKuTYWO20gsJkcyjWpa0-0-817d87ee672e4b60338a9e3c7017c550)