![运动学与动力学](https://wfqqreader-1252317822.image.myqcloud.com/cover/733/677733/b_677733.jpg)
2.2 点的运动方程合成——三种运动方程间的关系
本节分析三种运动——绝对运动、相对运动和牵连运动之间的关系。一般来说,若已知动系运动(即牵连运动)的规律,则可以通过坐标变换来建立点在定系中的坐标(或矢径)与在动系中的坐标(或矢径)的关系。如图2-2所示,定系为O1x1y1z1,沿其坐标轴的单位矢量分别为i1, j1, k1;动系为O2x2y2z2,沿其坐标轴的单位矢量分别为i2, j2, k2。r1为绝对运动的矢径,r2为相对运动的矢径。
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0028_0001.jpg?sign=1739546515-NqmJKbhoteZ0DAOYcfnWcGJo7GBttkK7-0-5ac94e77582f24464e9b643697c34e73)
图2-2 定系与动系中矢径的关系
由图2-2可知
因为
r1=x1i1+y1j1+z1k1, r2=x2i2+y2j2+z2k2
所以
x1i1+y1j1+z1k1=xO2i1+yO2j1+zO2k1+x2i2+y2j2+z2k2
即
(x1-xO2)i1+(y1-yO2)j1+(z1-zO2)k1=x2i2+y2j2+z2k2
将上式两边依次点乘i1, j1, k1,可得
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0001.jpg?sign=1739546515-TGXifHsXDkYjM0GtupHQiK5BC1135wco-0-3793ed133d6f61fff5e139f6967e1e47)
将上式写成矩阵的形式为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0002.jpg?sign=1739546515-gPEVjJpFNpeGKwlhqgJPkbnBo5LVMRtB-0-655847b61683a74818ab0d860f2f5d4e)
若记
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0003.jpg?sign=1739546515-As1ffjN3pLmVDTle5UOxCz1FsdCF2vol-0-23e4cb0b9d5809b9accdf763fe78ab80)
则式(2-1)为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0004.jpg?sign=1739546515-lVWz225mOBWbpXsSHTTw8rWRnhCChfky-0-aae0c561aa1da51f023aaaeca0696de1)
式中,C12称为变换矩阵(transformation matrix)。特殊地,若动系与定系的坐标原点重合,则有
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0005.jpg?sign=1739546515-WG88H4bJY00wO187i17yacuNekixwlHV-0-a0239d36330f32c38615ebf28acdd5ea)
二维情况的简化
对于二维问题,其定系为Oxy,动系为O'x'y',动点为M,如图2-3所示。其变换矩阵为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0006.jpg?sign=1739546515-LQ7NPEO3ghDt9vWziY9Jv4yT8JePAf6K-0-c8c6bfb9ff66d04025c0486867a687b6)
图2-3 二维情况
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0007.jpg?sign=1739546515-QbEKpCFwnxamQIdlDfuZmsimPyLXCKwI-0-7382a670143e46671484d42547711042)
若绝对运动方程为
x=x(t), y=y(t)
相对运动方程为
x'=x'(t), y'=y'(t)
牵连运动的方程为
xO'=xO'(t), yO'=yO'(t), φ=φ(t)
则不难得到三种运动方程间的关系为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0030_0001.jpg?sign=1739546515-boOUWIiLnHVG5BAHY3VEHcYWihgfXtS5-0-54f3b5f5f03a4d59e247c2574fc53122)
例题2-1
点M相对于动系Ox'y'沿半径为r的圆周以速度v做匀速圆周运动(圆心为O1),动系Ox'y'相对于定系Oxy以匀角速度ω绕点O做定轴转动,如例题图2-1所示。初始时Ox'y'与Oxy重合,点M与O重合。已知OO 1=r,试求点M的绝对运动方程。
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0030_0002.jpg?sign=1739546515-Fh21xGRegka8WVvcrUrj1g670XySsWsE-0-15952b41fb6d5121b103500a3f7971bc)
例题图2-1
分析:本题是已知点M的相对运动方程,求点M的绝对运动方程。为此,只要利用式(2-1)写出上述两种运动方程之间的关系即可。
解:
点M的绝对运动方程与相对运动方程满足如下关系:
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0030_0003.jpg?sign=1739546515-udxjnvKUZ3jZIr2MnwGP2IVY0q0jFP1m-0-c23ea4458cea8488a8e77bb85d558ebc)
连接O1M,由图可知:。于是,得点M的相对运动方程为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0030_0005.jpg?sign=1739546515-VvyiHBSte1xKrupSCBAGW6sCWyaCGg83-0-b7165258b2bf46771f3986f98cf15f80)
牵连运动的方程为
xO'=xO=0, yO'=yO=0, φ=ωt
利用坐标变换关系式(a),可得点M的绝对运动方程为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0030_0006.jpg?sign=1739546515-gsVABFPW2Y81aRv30MkaiTfwEr1eoY7J-0-0d9513ae8f45650cbe086b978028b546)
例题2-2
用车刀切削工件的端面,车刀刀尖M沿水平轴x做往复运动,如例题图2-2所示。设Oxy为定坐标系,刀尖的运动方程为x=b sinωt。工件以等角速度ω逆时针方向转动。求车刀在工件圆端面上切出的痕迹。
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0031_0001.jpg?sign=1739546515-nuL5qMYPo47Squx8lCVo6tViH9PkrzbQ-0-7605c6d307f18b87484fed2447bd3094)
例题图2-2
分析:本题是已知车刀刀尖的绝对运动方程,求刀尖M相对于工件的轨迹方程。
解:
车刀刀尖的绝对运动方程和相对运动方程间的坐标变换关系为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0031_0002.jpg?sign=1739546515-bASMJcSfBPwnw6c07cqT9Q52gwklXCNU-0-d5417252b14936593c46a6b55d0e63cd)
取刀尖M为动点,动系固定在工件上,则动点M在动系Ox'y'和定系Oxy中的坐标关系为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0031_0003.jpg?sign=1739546515-E3V0h7YcDyWZH4ia7WzfSBkRxDXR0lKm-0-f312f4ff114d8ccb8757b62b6b180b69)
将点M的绝对运动方程(x, y)=(b sinωt, 0)代入式(a)中,得
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0031_0004.jpg?sign=1739546515-vUYqJsCbE4ILJzHpjE387p4OC036hNIo-0-25a54ed2fa9884967639cea0b83e7819)
上式即为车刀相对于工件的运动方程。
从上式中消去时间t,得刀尖的相对运动轨迹方程为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0031_0005.jpg?sign=1739546515-PQ9xKv4BgWQk5dvPi4yuL8BqtIWWLx74-0-14921de86d0fb2f274b8e21f871ddc05)
可见,车刀在工件上切出的痕迹是一个半径为的圆,该圆的圆心C在动坐标轴Oy'上,圆周通过工件的中心O,如例题图2-2中的虚线所示。