
会员
3D计算机视觉:原理、算法及应用
章毓晋编著更新时间:2021-10-29 12:08:42
最新章节:术语索引开会员,本书免费读 >
本书主要内容围绕3D计算机视觉展开,介绍了相关的基础概念、基本原理、典型算法、实用技术和应用成果。本书可在学过其姊妹篇《2D计算机视觉:原理、算法及应用》后学习。本书将从客观场景出发到最后对场景进行理解的全过程分为5个部分进行介绍。第1部分是图像采集,介绍了摄像机标定和3D图像采集技术;第2部分是视频运动,介绍了视频图像和运动信息,以及对运动目标进行检测和跟踪的技术;第3部分是物体重建,介绍了双目立体视觉和单目图像恢复技术;第4部分是物体分析,介绍了3D目标表达和广义匹配;第5部分是高层理解,介绍了知识和场景解释及时空行为理解。本书除提供大量示例外,还针对每章的内容提供了自我检测题(含提示并附有答案),并且给出了相关的参考文献和术语索引(包括英文)。
上架时间:2021-09-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
章毓晋编著
主页
同类热门书
最新上架
- 会员
ETL数据整合与处理(Kettle)
本书以Kettle实现ETL流程为目标,将ETL知识点与任务相结合,配套真实案例,深入浅出地介绍了ETL数据整合与处理的相关内容。全书共8章,第1章介绍了ETL概念和ETL工具,让读者在了解ETL相关的概念后,立刻上手ETL工具Kettle;第2~6章介绍了Kettle工具转换相关的组件,包括源数据获取、记录处理、字段处理、高级转换、迁移和装载等内容,内容与ETL流程匹配,能帮助读者快速掌握ETL计算机8.1万字 - 会员
大数据SQL优化:原理与实践
这是一本站在一线开发人员的视角,从SQL的本质出发,采用理论与实践相结合、案例与分析相结合、作者经验与一线需求相结合的方式,深度解读大数据SQL优化核心技术和解决方案的工具书。本书主要面向大数据初中级技术人员,期望帮大家深度理解大数据SQL优化原理,掌握SQL优化的落地实践方法,从而真正“玩转”大数据SQL优化技术,根据实际问题和需求设计出有针对性的提升SQL性能的解决方案。计算机14万字 - 会员
新媒体数据分析基础教程
本书共8章,第1章介绍新媒体数据分析的基础知识;第2章介绍各种新媒体数据分析指标;第3章介绍新媒体数据的采集;第4章介绍新媒体数据处理;第5章介绍新媒体数据分析的思维和方法;第6章介绍新媒体数据可视化;第7章介绍不同新媒体平台的数据分析方法和实战技能;第8章介绍新媒体数据分析报告的制作。计算机9.2万字 - 会员
网络科学与网络大数据结构挖掘
《网络科学与网络大数据结构挖掘》作为网络科学的工具性图书共分两大模块:第一模块是基础理论,包括网络基本概念、网络拓扑性质、复杂网络社团挖掘等内容,旨在让读者熟悉一些基本的建模方法和分析技巧。第二模块为应用模块,包括复杂网络在几个代表性领域中的应用研究分析及案例剖析等。全书没有过多地数学和物理推导,而是更为关注网络科学的思维习惯和研究方式,兼具理论性、资料性和实践性。可用于各学科领域的教学及研究人员计算机0字 - 会员
OLAP引擎底层原理与设计实践
本书分为6篇,共14章。从OLAP核心概念出发,以Presto为例,从整体执行流程到不同SQL的执行原理,力图把OLAP查询的核心流程以一种系统化的方式来给读者讲清楚。第一篇背景知识(第1章和第2章)介绍OLAP的基础知识和Presto相关的背景知识,并给出了后续贯穿全书的SQL代码;第二篇核心原理(第3章和第4章)非常详细地串讲了SQL执行流程,介绍了执行计划的生成和优化;第三篇经典SQL(第5计算机19.7万字 - 会员
大数据导论
本书围绕新工科背景下大数据人才培养需求编写,既涵盖了大数据的基础知识,又介绍了大数据分析的相关工具与案例。全书共9章,介绍了大数据采集与预处理、大数据存储与管理、大数据处理与分析、大数据可视化处理流程;重点分析了科大讯飞大数据平台在政务、交通、金融和用户画像等实际场景中的应用,还介绍了大数据实验环境的详细搭建步骤,方便读者快速理解和体验大数据应用技术;最后介绍了大数据治理中法律政策、行业标准建设的计算机14.5万字 - 会员
Python数据分析与挖掘实战(第3版)
本书是Python数据分析与挖掘领域的公认的事实标准,前两版销售超过15万册,被国内100余所院校采用为教材,同时也被广大数据科学工作者奉为经典。本书以真实项目案例为驱动,以真实的行业应用为依托,帮助读者快速掌握数据分析与挖掘的相关技术、流程与方法。本书精选了7个经典实战案例,涵盖了房地产、零售、互联网等多个领域,将Python编程知识、数据分析与挖掘知识和行业知识融合,让读者在实践中快速地掌握针计算机14万字 - 会员
Python数据分析
本书系统介绍了使用Python进行数据分析需要掌握的各项知识,涵盖了Python基础知识、网络爬虫技术、正则表达式、BeautifulSoup和JSON、词语切分、自然语言处理、使用NumPy与Pandas处理数据、数据可视化技术、MySQL、机器学习、朴素贝叶斯模型、支持向量机、随机森林、深度学习以及量化投资。本书通过结合数据分析技术的理论知识与Python的实战应用,帮助读者更好地运用Pyth计算机12.3万字 - 会员
云数据中心基础
本教材共介绍7个项目,项目1为云数据中心认知,主要介绍了什么是数据中心、云数据中心的特点、体系结构、云数据中心和传统数据中心的区别、绿色数据的概念以及发展趋势。项目2介绍了云数据中心的规划与设计,主要包括云数据中心的设计建设的指标、基础设施的规划以及云数据中心的优化策略。项目3介绍了云数据中心的硬件选型,主要包括服务器设备、网络设备以及存储设备的介绍和选型。项目4到项目6则重点介绍了虚拟化技术、云计算机12.1万字