第二次机器革命
(美)埃里克·布莱恩约弗森 (美)安德鲁·麦卡菲更新时间:2019-01-04 19:12:18
最新章节:译后记开会员,本书8折购 >
《第二次机器革命:数字化技术将如何改变我们的经济与社会》是一本充满积极和智慧力量的书。《第二次机器革命》将改变我们思考技术、社会和经济发展的方式。全球化是20世纪末期最重要的经济话题,有《世界是平的》为证;在21世纪初期,技术变革将会成为社会的热点话题,《第二次机器革命》可以为证。《第二次机器革命》中,埃里克·布莱恩约弗森和安德鲁·麦卡菲——这两位处于数字技术时代最前沿的思想家,向我们阐述了驱动我们经济和生活的发生变革的力量。他们认为,数字技术将会给我们带来难以想象的巨大变革:想象一下令人眩目的个人数字技术产品、一流的基础设施,都将会给我们带来极大的便利。数字技术(其核心是硬件、软件和网络)在不久的将来能够比医生更准确地诊断疾病,能够使用海量的数据改变零售行业,而且还能够相当人性化地完成很多工作。数字化技术在给我们带来极大便利的同时,也给各种职业带来永久性、颠覆性的改变。各种公司也将被迫转型,否则只能消亡。凭借对数字化技术和社会发展趋势的精准研究,布莱恩约弗森和麦卡菲辨析出了的生存与发展战略,也给我们找到了一条通向社会发展与繁荣的新路径。未来几十年,新一轮科技革命和产业变革将同人类社会发展形成历史性交汇,工程科技进步和创新将成为推动人类社会发展的重要引擎。对中国来说,打造创新型国家的历史使命已经开启,中国制造业也在面临迫在眉睫的全球挑战。在第二次机器革命的浪潮袭来之时,中国政府、中国企业和个人该如何面对这场剧变?
品牌:中信出版社
译者:蒋永军
上架时间:2016-12-01 00:00:00
出版社:中信出版社
本书数字版权由中信出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
(美)埃里克·布莱恩约弗森 (美)安德鲁·麦卡菲
主页
同类热门书
最新上架
- 会员
AIGC:让生成式AI成为自己的外脑
《AIGC:让生成式AI成为自己的外脑》针对近期较为火热的AIGC技术及其相关话题,介绍AIGC的技术原理、专业知识和应用。全书共分为九章。第一章介绍AIGC技术的基本概念和发展历程;第二、三章介绍AIGC的基础技术栈和拓展技术栈;第四、五章分别讨论了AIGC技术在文本生成和图像生成两个领域的现状和前景;第六章列举了目前较为热门的AIGC技术应用;第七章描述了AIGC的上、中、下游产业链及未来前景计算机12.8万字 - 会员
PyTorch深度学习与企业级项目实战
《PyTorch深度学习与企业级项目实战》立足于具体的企业级项目开发实践,以通俗易懂的方式详细介绍PyTorch深度学习的基础理论以及相关的必要知识,同时以实际动手操作的方式来引导读者入门人工智能深度学习。《PyTorch深度学习与企业级项目实战》共分18章,内容主要包括人工智能、机器学习和深度学习之间的关系,深度学习框架PyTorch2.0的环境搭建,Python数据科学库,深度学习基本原理,计算机10.8万字 - 会员
量子人工智能
量子计算与人工智能的交叉融合,促使量子人工智能的不断发展。本书旨在采用对深度学习爱好者友好的方式,构建量子人工智能应用。全书共13章,第1章和第2章系统介绍量子计算机发展脉络和量子计算编程的基础知识。第3~7章分别介绍不同的深度学习方法和在这些算法逻辑上构建量子启发算法的方式,用量子线路中的相位作为神经网络的可学习参数,重构为量子神经网络算子。这些算子可以在PyTorch环境中直接调用。第8章和第计算机7.6万字 - 会员
从零开始大模型开发与微调:基于PyTorch与ChatGLM
大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。《从零开始大模型开发与微调:基于PyTorch与ChatGLM》共18章,内容包括人工智能与大模型、PyTorch2.0深度学习环境搭建计算机12.8万字 - 会员
机器学习(第2版)
机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。本书深入浅出、内容计算机30.2万字 - 会员
MindSpore大语言模型实战
随着ChatGPT等大语言模型的迅速发展,大语言模型已经成为人工智能领域发展的快车道,不同领域涌现出各种强大的新模型。开发者想要独立构建、部署符合自身需求的大语言模型,需要理解大语言模型的实现框架和基本原理。本书梳理大语言模型的发展,首先介绍Transformer模型的基本原理、结构和模块及在NLP任务中的应用;然后介绍由只编码(Encoder-Only)到只解码(Decoder-Only)的技术计算机6.6万字 - 会员
破解深度学习(基础篇):模型算法与实现
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和必备工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神计算机14.8万字 - 会员
AI帮你赢:人人都能用的AI方法论
本书强调“把AI作为方法”(AI即ArtifcialIntelligence,人工智能)这一核心理念,旨在引导读者掌握与AI对话的关键技巧,并将AI融入工作和生活真正体验AI带给人类的高效与便捷。本书从技术的发展规律人手,探讨了把AI作为方法的必然性和必要性,进一步剖析了算法与哲学在内在逻辑上的贯通性。此外,本书通过丰富多样的案例展示了AI的强大魅力,通过一系列“召唤术”帮助读者运用AI创造性地计算机9.7万字 - 会员
机器学习的算法分析和实践
本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最计算机7.4万字